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Abstract 
This study reports new data on the petrography, total rock chemistry and U-Pb zircon geochronology of volcanic rocks 
of the La Quinta Formation that outcrop the western flank of the Perijá mountain range and the Cesar and La Guajira 
departments. The volcanic rocks consist of basaltic, andesitic, dacitic and rhyolitic lavas, and the volcaniclastic rocks 
consist of crystal-vitric and crystal-lithic tuffs and agglomerates of calc-alkaline affinity, formed in a continental margin 
arc setting. Geochronological data suggest that the La Quinta Formation was volcanically active for approximately 25 
Ma, during which its composition varied from basaltic trachyandesites to rhyolites. U-Pb dating suggests that the vol-
canism began in approximately 191 Ma (Sinemurian age) and continued until approximately 164 Ma, with at least three 
periods of increased volcanic activity. The inherited zircons contain Triassic, Permian, Neoproterozoic and Mesopro-
terozoic populations, indicating that this arc was emplaced on rocks of the Chibcha Terrane along the South American 
paleomargin and that it is part of the same arc that formed the Jurassic volcanic rocks of the Sierra Nevada de Santa 
Marta, Cocinas and San Lucas mountain ranges and the Upper Magdalena Valley.
Keywords:  Jurassic; U-Pb geochronology; volcanic rocks; Perijá mountain range.

R esumen 
Este trabajo presenta nuevos resultados de petrografía, química de roca total y geocronología U-Pb en circón de rocas 
volcánicas de la Formación La Quinta que afloran en el flanco occidental de la serranía de Perijá, en los departamen-
tos de Cesar y La Guajira. Las rocas volcánicas corresponden a lavas basálticas, andesíticas, dacíticas y riolíticas, y las 
rocas volcanoclásticas corresponden a tobas cristalo-vítreas, cristalo-líticas y aglomerados de afinidad calcoalcalina, 
formadas en un ambiente de arco de margen continental. Los datos geocronológicos sugieren que el vulcanismo de la 
Formación La Quinta estuvo activo aproximadamente 25 Ma, intervalo en el que varió su composición de traquian-
desitas basálticas a riolitas. Las edades U-Pb obtenidas sugieren que el vulcanismo se inició aproximadamente a 191 
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Ma (Sinemuriense) y se extendió hasta aproximadamente 164 Ma, con al menos tres periodos de 
mayor actividad volcánica. Los circones heredados presentan poblaciones del Triásico, Pérmico, 
Neoproterozoico y Mesoproterozoico, lo que sugiere que este arco se emplazó en rocas del Terreno 
Chibcha a lo largo de la paleomargen Suramericana y que son parte del mismo arco que formó las 
rocas volcánicas jurásicas de la Sierra Nevada de Santa Marta, la serranía de Cocinas, la serranía de 
San Lucas y el valle superior del Magdalena.
Palabras clave:  Jurásico; geocronología U-Pb; rocas volcánicas; serranía de Perijá.

1. IntroductIon 

The volcanic rocks of the La Quinta Formation outcrop 
at the northern end of the Colombian Cordillera Oriental 
[Eastern Ranges] in the Perijá mountain range, and they 
are part of the Jurassic volcanism that outcrops in the 
Upper Magdalena Valley in the San Lucas and Sierra Ne-
vada de Santa Marta mountain ranges and in the Upper 
Guajira. The ages of these volcanic sequences range from 
195 to 164 Ma (Cediel et al., 1980, 1981; Bustamante et 
al., 2010; Villagómez, 2010; Leal Mejía, 2011; Zapata et 
al., 2016; Rodríguez et al., 2018; Correa et al., 2019; Leal 
et al., 2019).

Most authors agree on the model of formation of the 
lower-to-middle Jurassic volcanism and plutonism of the 
northern Andes, which is considered to be continental 
margin arc magmatism. The following variations in the 
model and arc development have been proposed: 1) an 
arc formed by a single subduction zone located west of the 
South American margin, which was formed between 209 
and 114 Ma (Spikings et al., 2015); 2) a stationary conti-
nental margin arc formed by oblique convergence between 
the Farallón plate (an ancient oceanic plate) and the NW 
of South America that has been active for at least 40 Ma 
(Bustamante et al., 2016); 3) a continental arc and back-arc 
comprising Jurassic rock blocks of the Upper Magdalena 
Valley, Colombian Cordillera Central [Central Andes], 
and San Lucas and Sierra Nevada de Santa Marta moun-
tain ranges (Villagómez et al., 2015; Bayona et al., 2010); 
4) an erosive continental margin arc that was active for 
~30 Ma exhibiting a compositional migration in a west-
east direction (Rodríguez et al., 2018); and 5) a continental 
margin arc that fragmented and scattered along the paleo-
margin after its formation (Bayona et al., 2010; Villagómez 
et al., 2015; Zapata et al., 2016; Zuluaga et al., 2015).

This study reports new petrography (9), total rock 
chemistry (8) and U-Pb zircon geochronology (laser 
ablation inductively coupled plasma mass spectrometry 
(LA-ICP-MS)) (5) data, which, together with published 
geochronology data (González et al., 2015a; González et 
al., 2015b) and with total the rock chemistry of the La 
Quinta Formation, supplement the basic information on 
this unit and on the volcanism associated with the arc da-
ted to the Lower-Middle Jurassic. 

This new information is correlated with other vol-
cano-sedimentary sequences that outcrop in Colombia, 
specifies the distribution of arc volcanism and, togeth-
er with the analysis of the inherited zircons in volcanic 
rocks, improves our understanding of the basement dis-
tribution on which the arc is founded and of the geolog-
ical evolution of the northern Andean volcanism during 
the Jurassic while furthering our knowledge of the Juras-
sic tectonic blocks that were scattered along the paleo-
margin and their distribution, according to Bayona et al. 
(2010), Villagómez et al. (2015), Zapata et al. (2016) and 
Zuluaga et al. (2015). 

2. regIonal geologIcal Framework 

The Perijá mountain range, which is located in the nor-
thern Cordillera Oriental [Eastern Ranges], uplifts from 
the Cerrejón and Yaya faults on its western edge, culmi-
nating in the Oca fault northward and forming a block 
bordered to the west by the Cesar-Rancherías river va-
lley, which is a drainage basin filled with Mesozoic and 
Cenozoic sediments covered by recent alluvial deposits 
that separates the Perijá mountain range from the Sierra 
Nevada de Santa Marta block; to the north, the Oca fault 
separates the basin from the Cocinas mountain range in 
Upper Guajira (Figure 1). 
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The core of the Perijá mountain range consists of 
Precambrian gneissic metamorphic rocks, such as those 
observed in the Cachirí river, on the eastern slope of the 
mountainous range; the Río Cachirí Group rests on this 
gneiss basement (Pastor Chacón et al., 2013), although 
the gneiss basement has not been found on the western 
slope of the Perijá mountain range (Miller, 1960 and Fo-
rero, 1970). In the northern sector, the Perijá mountain 
range is essentially composed of Jurassic and Cretaceous 
units that cover Paleozoic units. The oldest rocks are 
Cambro-Ordovician metamorphic rocks and Devonian, 
Carboniferous and Permian sedimentary rocks (Forero, 
1970; Pastor Chacón et al., 2013). On the western slope, 
the oldest unit of the Perijá mountain range contains De-
vonian sedimentites consisting of argillites, sandstone 
siltstones and limestones (Weisbord, 1926; Trumpy, 1943; 
Miller, 1960; Forero, 1970 and Pastor Chacón et al., 2013).

The Jurassic volcano-sedimentary sequences of the 
La Quinta Formation rest on Paleozoic outcrops of the 
western slope of the Perijá mountain range. These se-
quences consist of red beds of sandstones, siltstones, ar-
gillites, conglomerates, subordinate lavas and subaerial 
pyroclastic rocks, where the former are similar to those 
exposed on the eastern slope of Sierra Nevada de Santa 
Marta, where abundant Jurassic volcanic rocks outcrop 
(Tschanz et al., 1969).

Cretaceous sedimentary sequences appear on both 
banks of the Cesar-Rancherías valley (Molino Formation, 
Cogollo Group and La Luna and Portales formations). 
These sequences rest on the La Quinta Formation and 
Jurassic Vulcanites of the Sierra Nevada de Santa Marta 
(SNSM). Similarly, Paleocene-to-Miocene sedimentary 
sequences, such as the Cerrejón Formation, rest on the 
Cretaceous units.

3. HIstory oF la QuInta FormatIon

The La Quinta Formation consists of red sediments that 
stratigraphically lie above Paleozoic units and below Me-
sozoic units. This unit was described by Kundig (1938) 
in the state of Táchira on the Seboruco-La Grita road 
near the La Quinta hamlet in Venezuela. The sequence, 
towards the base, is made up of compact dark red con-
glomerates with well-cemented rims and with sandstone 
and red clay intercalations. 

In Colombia, Miller (1960) coined the term La Quin-
ta Formation to refer to the likely Jurassic sediments that 
are found on the western slope of the Perijá mountain 
range, on the western slope of the Ranchería and Cesar 
rivers, and on the Majuyura Ridge (Oca fault) at the nor-
thern end of the Perijá mountain range.

Radelli (1962) continues using the term La Quinta 
Formation coined by Miller (1960), considering the strati-
graphic correspondence with the La Quinta Formation of 
the Venezuelan authors, the sedimentation environment 
and the presence of volcanic material. Radelli (1962) des-
cribes the sequence as a predominantly detrital succes-
sion, albeit noting the presence of volcanic material. This 
author distinguishes the following facies: a) conglomera-
tes with volcanic pebbles, which form the basement; b) 
acidic volcanic rocks associated with sandstones; and c) 
the fine-grained red sandstones that make up most of the 
La Quinta Formation, with interbedded tuffs and with 
sandstones at the basement of the formation, together 
with andesitic lavas, where there are conformities and 
unconformities between the sediments described above. 

Forero (1972) surveyed a stratigraphic column of the 
La Quinta Formation in Manaure, Cesar Department 
(Colombia), and identified the following five sets of roc-
ks from bottom to top: a) conglomerates, red sandstones 
and volcanic rocks; b) red sandstones and lutites; c) red 
sandstones with tuff intercalations; d) conglomerate with 
volcanic pebbles; and e) rhyolitic tuffs.

Hernández (2003) describes the sequence of the La 
Quinta Formation in the Perijá mountain range east of 
the towns of La Jagua de Ibirico in the sector of La Vic-
toria de San Isidro and southeast of Santa Isabel, which 
shows a succession along the western flank of the moun-
tain range. Arias and Morales (1999) report that this unit 
outcrops near the municipality of Manaure and continues 
south to the San Antonio gorge, with a thickness ranging 
from 2,700 to 3,000 m, whereas its thickness markedly 
decreases in La Jagua de Ibirico due to local reverse faults 
that affected the unit through tectonic uplift in the Mio-
cene during the Andean orogeny. 

Geoestudios (2006) describes the La Quinta Forma-
tion as a sequence consisting of purple-red, aphanitic ash 
tuffs and welded ash-flow tuffs with pseudolamination, 
together with slightly calcareous mudstones, conglome-
rate sandstones and matrix-supported conglomerates, 
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with local interbedding of reddish mudstones and arkosic 
sandstones with cross-bedding.

González et al. (2015 a and b) describe volcanic and 
pyroclastic rocks throughout the sequence of the La 
Quinta Formation, consisting of basalts, andesites, da-
cites, rhyolites and calc-alkaline subalkaline pyroclastic 
rocks, formed in a continental volcanic arc setting and 
with Lower to Middle Jurassic U-Pb ages.

3. metHodology

Regional sampling was performed from the volcanic roc-
ks of the La Quinta Formation in the Perijá mountain 
range and the Cesar and La Guajira departments for this 
study. In this sampling, sixteen rocks were taken, with 
eleven additional samples for zircon extraction; fifteen 
new thin sections were prepared, total rock chemical 
analysis was performed on eight rocks, and six samples 
were dated by zircon U-Pb LA-ICP-MS.

3.1 Petrography
Initially, petrographic analyses were performed from the 
mapping projects of the Servicio Geológico Colombiano; 
previously known as Ingeominas. In the present study, 
rock samples were selected for petrography from a larger 
number of samples collected in field work. The selection 
criteria used in this study were undisturbed rocks with 
defined spatial distribution representative of the volca-
nic rocks that make up the La Quinta Formation. Fifteen 
new samples were sent to the Thin Section Preparation 
Laboratory of the Servicio Geológico Colombiano, Bo-
gotá headquarters. Once the thin sections were prepared, 
they were analyzed by the authors at the Petrography 
Laboratory of the Servicio Geológico Colombiano in 
Medellín, using SGC standards in the analysis with Leitz 
and Olympus petrographic microscopes and classifying 
the samples from 300 counting points, according to the 
quartz, alkali feldspar, plagioclase, feldspathoid (QAPF) 
diagrams by Streckeisen et al. (1978) and following the 
recommendations of Le Maitre et al. (2002).

3.2 Total rock chemical analysis
Eight fresh rocks were chosen, taking into account the 
previous petrographic analysis, which was followed by to-
tal rock chemical analysis at the Analytical Geochemistry 

Laboratory of the Servicio Geológico Colombiano, Bogo-
tá headquarters. The major oxides and minor elements 
were analyzed with a Panalytical Axios Mineral X-ray 
fluorescence spectrometer; the major oxides were quan-
tified using samples fused with lithium metaborate and 
lithium tetraborate, whereas the minor elements were 
quantified using pressed samples. The trace elements 
were analyzed using a Perkin Elmer Nexion inductively 
coupled plasma mass spectrometer (ICP-MS). The fin-
dings of González et al. (2015 a, b) were compared with 
the results from the present study since both were based 
on samples collected from the same region.
Petrographic and geochemical diagrams were prepared 
using the GCDkit software by Janoušek et al. (2006). 

3.3 U-Pb geochronology
Eleven samples were chosen for zircon separation after 
petrographic and chemical analysis of the total rock. Of 
these samples, from only six samples of lava and pyro-
clastic volcanic rocks, enough zircons were obtained 
for LA-ICP-MS U-Pb zircon dating. The rock samples 
were crushed, pulverized and sieved following the sep-
aration procedure of Castaño et al. (2018) and analyzed 
by LA-ICP-MS according to the procedure described by 
Peña et al. (2018). Most zircons were concentrated at the 
Chemistry Laboratory of Geological Surveys, Medellín 
headquarters, using hydrodynamic and magnetic sepa-
ration and others were concentrated in the field using a 
gold pan. The zircons were selected manually using an 
Olympus stereo microscope at the Petrography Labora-
tory, Medellín headquarters. Cathodoluminescence (CL) 
images of the zircon grain mounts were acquired under a 
Zeiss scanning electron microscope (SEM) with a GatCL 
miniCL detector to observe the internal structure of the 
selected grains.

The analyses were performed in a Photon Machines 
laser ablation system with a 193-nm excimer laser cou-
pled to an Element 2 mass spectrometer. The isotopes 
used for manual integration were 238U, 206Pb and 204Pb. 
Plešovice zircon (Sláma et al., 2008), FC-1 (Coyner et al., 
2004), Zircon 91500 (Wiedenbeck et al., 1995; Wieden-
beck et al., 2004) and Mount Dromedary (Renne et al., 
1998) were used as reference standards. The points an-
alyzed in the zircons were 20 microns in diameter. Data 
reduction was performed using the Iolite v2.5® software 
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Figure 1.  Geological map of the La Quinta Formation. Distribution of samples with thin sections, lithogeochemistry and geochronology with U-Pb 
dating
 Source: González et al. (2015 a, b); Invemar et al. (2007) 
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in IGORPro 6.3.6.4® (Paton et al., 2010; Hellstrom et al., 
2008). Common lead correction was performed using the 
evolution model according to Stacey and Kramers (1975). 
The final results corresponded to the mean of the data 
that fell within two standard deviations.

The ages were determined by the youngest results in 
each sample (assuming that this group of zircons crys-
tallized during the same magmatic episode) because this 
provides the best estimate of the rapid crystallization of 
pyroclastic or volcanic material. The analysis was per-
formed sample by sample when the youngest data co-
rresponded to one or more populations by considering 
probability density plots and zircon by zircon when more 
than one population was identified by analyzing the 
ablation sites and the internal structure of each zircon, 
initially separating the ablations into cores and rims and 
then grouping them. This method was used to separate 
the populations of xenocrystals and inherited zircon co-
res. In the populations that defined the crystallization age 
and suggested the presence of antecrystals, the zircons 
were compared. Whether the ablation sites corresponded 
to cores or rims was analyzed, and the age of the entire 
population was calculated, which could define the crysta-
llization age; additionally, the weighted average age of the 
antecrystals and the weighted average age of the younger 
zircons was calculated, which likely defined the crystalli-
zation age of the rock. The findings were compared with 
the crystallization episodes of the arc in both the plutonic 
and volcanic rocks (Rodríguez et al., 2018; Rodríguez et 
al., 2019b; Correa et al., 2019). 

The 207Pb/206Pb ratios, ages and errors were calculated 
according to Petrus and Kamber (2012). The concentra-
tions of U and Th were calculated according to Paton et 
al. (2010) using an external standard zircon. The ages and 
the geochronology plots were calculated and drawn, res-
pectively, using the add-in program Isoplot v4.15 (Lud-
wig, 2012). The graphical representation in the article is a 
single weighted average age diagram showing the zircons 
that indicate the age of the crystals and the age of crysta-
llization, albeit with the age calculated separately in the 
program.

4. results

4.2 Petrography
The La Quinta Formation, located in the Perijá mountain 
range and the Cesar and La Guajira departments, prima-
rily consists of conglomerates, conglomeratic sandstones 
and reddish and subordinately brown, gray and greenish 
gray sandstones, usually in thick-to-very-thick wavy la-
yers, some of which include cross-bedding.

Less frequently, violet rhyolitic, dacitic, andesitic and 
basaltic lavas are identified, as well as thick interbedded 
layers of crystal-vitric and crystal-lithic tuffs and agglo-
merates with ash matrix and lapilli. The volcanic rocks 
of this study are violet. The petrographic results are sum-
marized in Figure 2 and Table 1. 
Basalts. The basalts have a fluid trachytic, porphyritic 
texture, and some of the basalts show irregular zeoli-
te-filled amygdules, epidote and epidote and quartz. The 

Table 1.  Modal classifications in percentages for volcanic rocks of the La Quinta Formation

IGM W N Qz Pl Fsp Cpx Ol Hbl Bt Op Ap Zrn Ep Matrix FR Other Classification

901373 1124017 1660152 16 12.1 10 1.5 1.9 0.4 0.8 29.2 30 Vitreous tuff

901609 1148285 1701812 3.6 15.8 0.8 7.1 2 0.8 69.9 Dacite

901377 1148433 1696644 1.4 21 0.7 1 tr 1 71.9 3 Andesite

901631 1123566 1659592 33 20.8 2.1 2.1 41.7 Dacite

901624 1156113 1709417 22.5 5.3 8.6 tr 63.6 Phenoandesite

901625 1116457 1652853 57.6 1 1.3 40.1 Basalt

901382 1116236 1653658 45.6 16.2 38.2 Olivine basalt

901437 1144105 1681005 0.1 79.9 8.4 11.6 3.1 Trachytic basalt

901623 1147831 1694625 1.2 8.4 2.1 0.5 0.6 2.4 Tr Tr 32.4 50.6 1.8 Lithic tuff

 Qz: quartz, Pl: plagioclase, Fsp: feldspar, Cpx: clinopyroxene, Ol: olivine, Hbl: hornblende, Bt: biotite, Op: opaque minerals, Ap: apatite, Zrn: zircon, 
Ep: epidote, FR: lithic fragments, tr: traces. Coordinates in Magna Sirgas, Bogotá
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phenocrysts are mainly skeletal olivine (0.1-16%) inside 
a trachytic matrix consisting of tabular plagioclase eu-
hedral microcrystals (45.6 %-79.9 %), glass and interser-
tal opaque minerals (hematite 1.3 %-11 %), and some of 
the rocks contain clinopyroxene (0 %-8.4%). The skeletal 
olivine phenocrysts are euhedral to subhedral, with sizes 
ranging from 700 µn to 3 mm and with irregular fractu-
res marked by opaque minerals altered to hematite, and 
are completely replaced by serpentine and epidote inside 
the crystals. The accessory minerals are microcrystals of 
opaque minerals (hematite). The alteration minerals are 
serpentine and epidote from olivine; the plagioclase can 
be dusted due to an alteration to saussurite, and the glass, 
in some rocks, is altered to epidote and sericite (Figure 
3A and B).
Rhyolites and dacites. Rhyolites and dacites are rocks 
with microporphyritic, porphyritic and sometimes se-
riate textures. These rocks consist of euhedral microphe-

nocrysts to phenocrysts of quartz (6.6 %-38 %), plagio-
clase (12 %-45 %), sanidine (0 %-10 %) and may contain 
hornblende. The phenocrysts are dispersed in a matrix 
ranging from hyalocrystalline to fluidal microlithic; the 
matrix can be devitrified and altered to secondary serici-
te and epidote aggregates. The accessory rocks are ochre 
hematite, which accounts for the color of the rocks, apa-
tite and zircon. The quartz can be euhedral-to-subhedral 
bipyramidal, with matrix corrosion bays and uneven in-
ternal matrix droplets. The plagioclase ranges from 3 to 
0.1 mm and is found in euhedral crystals, with zonation. 
The alteration minerals are sericite and clay in plagioclase 
and feldspar and chlorite in amphiboles.

Pyroclastic rocks. The rocks correspond to red-to-vio-
let, and less frequently greenish-gray, tuffs and volcanic 
agglomerates and consist of lithic fragments of crystals 
and altered glass. 

Figure 2.  Macroscopic observations of lavas and tuffs of the La Quinta Formation
 A) 901373-Tuff. B) 901377-Tuff. C) 901609-Dacite. E) 901624-Phenoandesite
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Figure 3.  Microscopic observations of lavas and tuffs of the La Quinta Formation
 A, B) Samples IGM 901382 and IGM 901625: basalts consisting of skeletal olivine (Ol) phenocrysts suspended in a trachytic plagioclase matrix 
(M). C) Sample IGM-901437: basaltic andesite with clinopyroxene (Cpx) phenocrysts suspended in a trachytic plagioclase matrix (M). D) Sample 
IGM 901624: andesite, seriate plagioclase (Pl) phenocrysts and skeletal hornblende (Hbl) suspended in a vitreous matrix (M). E) Sample IGM 
901609: andesite with plagioclase (Pl) phenocrysts and quartz in a microlithic matrix (M). F) Sample IGM 901373: crystalline vitreous tuff with 
quartz (Qtz) and feldspar (Fsp) crystals suspended in a vitreous matrix (M)
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The tuffs consist of volcanic lithic fragments of an-
desites and basalts with porphyritic textures and vitreous, 
trachytic, fluidal microlithic and devitrified matrix, with 
plagioclase phenocrysts and, less frequently, with skeletal 
mafic minerals replaced by opaque minerals and epidote, 
with sizes ranging from 300 microns to 6 mm (ash and la-
pilli). The suspended and scattered fragments range from 
angled and rounded to amorphous. Some crystal frag-
ments of quartz, plagioclase, sanidine, hornblende and 
biotite range from 0.2 to 1.8 mm. The crystals and crystal 
fragments are anhedral to euhedral. The quartz can be 
bipyramidal and have corroded rims, with corrosion bays 
and paste or devitrified glass inclusions. The plagioclase 
and sanidine crystals are tabular euhedral and are cove-
red with their alteration to kaolin; the hornblende and the 
biotite usually occur as skeletal crystals completely repla-
ced by opaque minerals. The matrix consists of devitri-
fied glass and fragments of quartz crystals and feldspars 
smaller than 80 microns, with widespread apatite, zircon 
and opaque minerals as accessory minerals (Figure 3F).

Table 2.  Results for major oxides in lavas and pyroclastic rocks of the La Quinta Formation

IGM 901609 901610 901377 901382 901437 901623 901624 901625

Field No. GOE-1045A GOE-1045B GOE-1048 GOE-1058 GR-6821 GR-6849 GR-6851 GR-6854

W 1148285 1148285 1148433 1116236 1144105 1147831 1156113 1116457

N 1701812 1701812 1696644 1653658 1681005 1694625 1709417 1652853

SiO2 60.57 59.55 58.24 51.27 51.29 70.43 55.66 57.75

TiO2 1.05 0.87 1.20 1.36 1.49 0.48 1.21 1.08

Al2O3 17.35 16.05 15.28 15.32 15.45 14.39 18.31 15.16

 Fe2O3T 6.09 6.60 7.80 8.70 9.08 3.08 5.41 7.30

MgO 1.83 4.66 2.27 7.32 6.64 1.01 2.64 4.57

CaO 1.16 1.29 5.60 5.11 5.83 1.03 3.50 3.47

Na2O 6.19 5.59 5.30 4.38 4.53 6.23 7.53 5.21

K2O 3.42 1.49 1.10 2.24 1.82 1.84 0.81 2.64

P2O5 0.247 0.292 0.465 0.345 0.526 0.146 0.298 0.325

MnO 0.01 0.01 0.01 0.02 0.02 0.00 0.01 0.01

LOI 1.88 3.41 2.53 3.60 2.99 1.27 4.30 2.19

 The SiO2 values of lavas and pyroclastic rocks range from 51.3% to 70.4%, and the Fe2O3, MgO and CaO values decrease with increasing SiO2 
(Table 2); the Na2O values increase with increasing SiO2, and the K2O content is variable and dispersed. The TiO2 values are higher and lower than 
1%, with most values > 1 %, except for samples GOE-1045B and IGM- 901623 (GR-6849), with TiO2 < 1 %. The Al2O3 content ranges from 14.4 % 
to 18.3 %; Fe2O3 ranges from 3.1 % to 9.1 %; MgO ranges from 1 to 7.3 %; CaO ranges from 1 % to 5.8 %; the alkali (Na2O + K2O) content is high, 
ranging from 6.3 % to 9.6 %, with K2O/Na2O ratios < 0.6 %

5. geocHemIstry

Eight samples of lavas, agglomerates and tuffs were 
analyzed. The spatial distribution of the samples is shown 
in Figure 1. The contents of the major oxides and trace 
and rare-earth elements (REE) are presented in Tables 2 
and 3.

The samples IGM 901610, IGM 901382 and IGM 
901624 present 3.41 %. 3.60 % and 4.30 % losses on igni-
tion (LOIs), respectively. The sample IGM 901382, clas-
sified as basalt, shows olivine phenocrysts that are com-
pletely altered to serpentine; the sample IGM 901624, 
classified as andesite, shows skeletal hornblende that is 
altered to calcite and calcite veinlets, and the sample IGM 
901377, classified as andesite, presents hydrothermal 
quartz veins. The analysis of the possible rock alterations 
from the diagram of Hughes (1972) demonstrated that 
the samples IGM 901624, IGM 901623, IGM 901610 and 
IGM 901377 show sodic alteration (Figure 4).
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Table 3.  Results for trace elements of volcanic rocks of the La Quinta Formation

IGM 901382 901437 901609 901610 901624 901625 901377 901623

Field No. GOE-1058 GR-6821 GOE-1045A GOE-1045B GR-6851 GR-6854 GOE-1048 GR-6849

Chemical 
classification

Basaltic 
trachyandesite

Basaltic 
trachyandesite Trachydacite Trachyandesite Trachyandesite Trachyandesite Trachyandesite Rhyolite

W 1116236 1144105 1148285 1148285 1156113 1116457 1148433 1147831

N 1653658 1681005 1701812 1701812 1709417 1652853 1696644 1694625

Y 27 25 24 26 27 21 22 18

Li 33.5 65.7 23.12 53.37 31.19 27.60 13.7 10.31

Be 1.70 2.01 1.77 2.37 1.57 1.38 1.79 2.07

Sc 24.82 21.60 20.7 20.5 22.0 21.5 17.78 5.8

Co 40.8 41.6 27.5

Ga 17.3 18.3 21 34 20 18 17.9 20

As 2.82 9.14 4.5 5.2 4.7 2.5 3.88 4.7

In 0.06 0.08 0.05 0.06 0.05 0.06 0.05 0.03

Cs 0.29 0.22 0.80 1.35 0.62 1.12 0.38 0.13

Ba 618 829 1972 352 181 1359 442 241

La 23.6 30.0 40 24 36 30 28.3 112

Ce 55.7 75.1 88 68 76 71 69.9 119

Pr 7.6 11.6 10.6 8.8 9.4 8.5 9.6 14.2

Nd 27.1 46.2 13.0 18.4 14.1 11.7 35.9 5.1

Sm 6.7 9.4 7.12 7.03 6.79 6.70 7.7 6.77

Eu 2.0 2.8 2.01 1.85 1.21 2.03 2.1 1.58

Gd 6.3 7.9 6.48 6.39 6.41 6.14 6.9 6.64

Tb 0.92 1.16 0.85 0.88 0.90 0.89 0.89 0.77

Dy 4.94 5.90 3.93 4.73 4.77 4.63 4.48 3.58

Ho 1.01 1.14 0.73 0.87 0.90 0.87 0.83 0.67

Er 2.80 3.18 2.01 2.59 2.57 2.48 2.29 1.93

Tm 0.38 0.40 0.25 0.34 0.34 0.33 0.30 0.25

Yb 2.34 2.60 1.59 2.17 2.10 2.09 1.92 1.61

Lu 0.33 0.38 0.23 0.33 0.31 0.31 0.25 0.23

Tl 0.34 0.46 0.41 0.22 0.10 0.38 0.18 0.26

Pb 6.1 8.0 15.4 7.9 13.7 6.2 9.1 7.2

Th 2.83 2.82 4.94 3.48 4.65 4.51 3.82 10.18

U 0.73 0.62 1.15 0.67 1.09 1.27 1.05 1.51

Nb 12 14 8 7 9 11 13 8

V  < 66 123 131 125 148 167 101 74

Rb 56 44 63 58 16 153 23 41

Sr 439 518 261 232 483 406 335 186

In the total alkali–silica (TAS) diagram (Le Bas et al., 
1986), the lava and pyroclastic rocks are located in the 

fields of basaltic trachyandesites, trachyandesites, trachy-
dacites and rhyolites, with wide compositional variation  
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(Figure 5A). The samples IGM 901382, IGM 901437, IGM 
901624, IGM 901625 and IGM 901609 are classified in the 
alkaline series, and the samples IGM 901625, IGM 901377 
and IGM 901623 are classified in the subalkaline series. The 
TAS diagram is similar to that obtained in the model classi-
fication of the rocks in the diagram of Streckeisen (1978). In 
the Nb/Y vs. Zr/Ti diagram (Winchester and Floyd, 1977), 
the samples of lavas and pyroclastic rocks primarily corres-
pond to the fields of andesites and subalkaline rhyodacites 
(Figure 5B). The rocks of the La Quinta Formation are me-
taluminous, and some reach the field of peraluminous roc-
ks (IGM 901609, IGM 901610, IGM 901623), with A/CNK 
values ranging from 0.7 to 1.3. The A/NK values range from 
1 to 2 (Figure 5C). The rocks show a wide dispersion in the 
SiO2 vs. K2O diagram and are distributed in the fields of 
normal-to-high-K calc-alkaline rocks (Figure 5D). 

Figure 5.  Classification diagram of volcanic rocks of the La Quinta Formation; lavas in black and tuffs in red
 A) TAS diagram (Le Bas et al., 1986). B) Winchester and Floyd (1977) classification diagram. C) Shand classification diagram. D)  SiO2 vs. K2O 
diagram (Peccerillo and Taylor, 1976)
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5.1 Trace elements
The behavior of these elements is analyzed considering 
the SiO2 content of the rocks and the chemical classifi-
cation to determine whether there are relationships be-
tween the patterns of rare-earth elements (REE), trace 
elements and SiO2 content. 

The chondrite-normalized (Nakamura, 1974) REE 
diagrams of basaltic trachyandesites show a parallel pa-
ttern, with a negative slope and with a light-REE enrich-
ment of 70 to 100 times. The (La/Yb)N ratio ranges from 
6.7 to 7.8 and has no Eu anomalies, and the Eu/Eu* ratio 
is approximately 1. The patterns of trachyandesites and 
trachydacites are subparallel, and these rocks are slightly 
more depleted of Tm, Yb and Lu than basaltic trachyan-
desites. The Eu anomaly ranges from 0.56 to 0.97, and the 
(La/Yb)N ratio ranges from 7.3 to 16.8. The rhyolitic tuff 
has a pattern with an even more negative slope and hi-
gher light-REE enrichment, between 300 and 400 times, 
and further heavy-REE depletion, with Eu and Ce ano-
malies, indicating plagioclase fractionation and possible 
contribution of sedimentary material to the source. In the 
rhyolitic tuff, the Eu/Eu* ratio is 0.7, and the (La/Yb)N 
ratio is 46.6 (Figure 6A, C and E). The higher values of 
the (La/Yb)N ratio in rhyolite could represent greater con-
tributions from the crust and periods of higher magma 
flux and/or thicker crust. Lower values of the (La/Yb)N  
ratio could indicate greater contributions of mantle ma-

terials to the magma and periods of lower magmatic flux 
(Girardi et al., 2008).

The lavas of the La Quinta Formation, in the normal 
mid-ocean ridge basalt (NMORB)-normalized trace ele-
ment diagram (Sun and McDonough, 1989), show ne-
gative Nb and Ti anomalies and positive anomalies and 
high values of Cs, Rb, Ba, Th, K and Pb, which suggests 
affinity with the continental crust (convergent margins), 
where these highly incompatible elements abound. The 
high values of Ba and Rb may result from their mobiliza-
tion from fluids that interact with magma in the subduc-
tion zone. All of these features are characteristic of mag-
mas generated in arc settings (Pearce et al., 1984; Pearce, 
1996), with gradual depletion of large-ion lithophile 
elements (LILE) and enrichment in high-field-strength 
elements (HFSE; Figure 6). The basaltic trachyandesitic, 
trachyandesitic and dacitic lavas show similar multiele-
ment patterns, with higher Cs, Rb and Ba mobility in tra-
chyandesites and with negative Nb and Ti and positive K 
and Pb anomalies. The andesitic pyroclastic rocks have 
multielement patterns in trace elements similar to those 
of lavas, suggesting that they are cogenetic (Figure 6B and 
D). The sample of rhyolitic tuff shows a different pattern, 
with more pronounced negative Nb, P and Ti anomalies 
(Figure 6F), suggesting at least three magmatic events, as 
proposed by Cano et al. (2017).
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Figure 6.  Multielement diagrams corresponding to volcanic and pyroclastic rocks of the La Quinta Formation
 A, C, E) Chondrite-normalized REE diagrams (Nakamura, 1974). B, D, F) NMORB-normalized multielement diagrams (Sun and McDonough, 
1989)
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5.2 Tectonic setting discrimination
The presence of basaltic trachyandesites, trachyandesi-
tes, dacites and calc-alkaline rhyolites, together with Nb 
and Ti anomalies in the multielement diagrams and ne-
gative slopes in the REE diagrams, suggests that the vol-
canic rocks of the La Quinta Formation were generated 
in an arc setting. The lavas and pyroclastic rocks of the 
La Quinta Formation, in the Sr/Y vs (La/Yb)N diagram 
(Condie and Kröner, 2013), are plotted in the field of 
continental volcanic arcs, with enrichment in (La/Yb)N as 
the rocks become more differentiated (Figure 7). Basaltic 
trachyandesites, trachyandesites and rhyolites are grou-
ped separately, and rhyolite is plotted outside the field, 
although in other diagrams, such as that of Pearce (2008), 
rhyolite falls within the field of arcs. Figure 7.  Nb/Yb vs Th/Yb diagram of Condie and Kröner (2013) for 

rock samples from the La Quinta Formation
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6. geocHronology

For the geochronological analysis of the volcanic roc-
ks of the La Quinta Formation, six rocks were analyzed 
using the U-Pb zircon LA-ICP-MS method. The U-Pb 
ages reported by González et al. (2015 a, b) were collec-
ted and are outlined in Table 4, and the corresponding 
spatial locations are shown in Figure 1. The reported ages 
are calculated with the Pb206/U238 ratio. In general, all the 
ages show dispersion in each of the dated samples. This 
phenomenon is well-documented in igneous systems, 
due to the long crystallization of zircon within the mag-
matic system (Schoene et al., 2015) or to Pb loss and the 
presence of older inherited zircons in the magma (ante-
crystals). The crystallization age of each rock is calcula-

ted considering the presence or absence of populations 
of ages according to the probability density diagram and 
the observable distribution in the Tera-Wasserburg dia-
gram, which could suggest populations of antecrystals. 
For this purpose, cathodoluminescence images and the 
age of each zircon are analyzed, as well as the locations 
of zircon ablations, for which the younger zircon popu-
lations are separated from the zircon populations of the 
magmatic system that could correspond to the ages of the 
antecrystals. Three ages are determined in the rocks that 
show high dispersion of ages according to the Pb206/U238 
ratio: the age of the entire population, the age of the likely 
antecrystals and the youngest age of likely crystallization. 
These ages are analyzed in the discussion.

The sample GOE-1045A corresponds to a dacite ac-
cording to the petrographic classification and to a tra-
chydacite according to the chemical classification. There 
are two populations of zircons in this rock: one of col-
orless, flattened and elongated prismatic zircons (stems), 
with sizes ranging from 80 to 110 microns in length, and 
a second population of oval zircons, with sizes ranging 
from 20 to 100 microns. In cathodoluminescence (CL) 

images, the prismatic crystals show the typical oscillatory 
zonation of igneous zircons (Figure 8E and F), and the 
oval zircons correspond to inherited zircons (cathodolu-
minescence supplementary files). A total of 52 ablations 
were performed in 54 zircons (supplementary table), dis-
regarding discordances greater than 10% in the data inter-
pretation. The age of the entire set of zircons is calculated 
as 188.3 ± 2.2, with a mean square weighted deviation  

Table 4.  Summary of U-Pb ages determined by LA-ICP-MS in zircon samples of the La Quinta Formation

Sample No. W Longitude N Latitude Rock Age (Ma) MSWD Inheritances Reference

GOE-1045a 1148285 1701812 Trachydacite 188.3 ± 2.2 3.9
1,902.2 ± 70 (n = 1); 1,138-1,191 (n = 2); 

1,010.2-1,097 (n = 5); 856.2 ± 21.6 (n = 1); 
931.1 ± 22 (n = 1); 613.5 ± 15; 210-218 

(n = 3)
Present study

GR-6849 1147831 1694625 Tuff* 179.5 ± 2.1 4.3
1.974.3; 1,369-1.311 (n = 3); 1,283-

1,209 (n = 3); 1,076-926.3 (n = 5); 992-
926.3 (n = 4); 873.3-855.9; 623 ± 25.6; 

556-551 (n = 3); 287.7 ± 8 (n = 1)
Present study

GR-6851 1156113 1709417 Trachyandesite 188.3 ± 2.5 6.6
1,913.8 ± 39.7 (n = 1); 1,361.1 ± 31 (n = 1), 
892.6-996.2 (n = 2); 625.4-605.2 (n = 2); 

226.2-203.5 (n = 4)
Present study

GOE-1057 1124017 1660152 Vitreous tuff* 175.5 ± 1.4 5.3 1,263.2 ± 33 (n = 1); 956.2-969.5 (n = 2). Present study

GZ-6903 1123566 1659592 Dacite* 174.8 ± 1.2 3.4

1,515 ± 55.6 (n = 1); 1,465.7 ± 55 (n = 1); 
1,343-1,322 (n = 2); 1,278.8-1,202 

(n = 5); 1,167-1,153 (n = 5); 1,087-1,004 
(n = 7); 993-906 (n = 19); 882.8-852 

(n = 4); 269-252 (n = 4)

Present study

GR-6854 1116457 1652853 Trachyandesite  —
1,615 ± 40 (n = 1); 1,578-1,537 (n = 3); 

1,487.8 ± 45 (n = 1); 1,559-1,487 (n = 3); 
1,359-1,295 (n = 3); 1,266-1,199 (n = 5); 

1,072-1,013 (n = 6)
Present study

U-Pb ages in previous studies

DQB-0058r 1100929 1590508 Tuff 181 ± 1.1 1.2   González et al., 2015a

DQB-0060r 1101194 1589892 Rhyolite 180 ± 1 3.1 González et al., 2015a

DQB-0061r 1100 988 1589202 Rhyolite 177 ± 1 1.7 González et al., 2015a

ABE-oo75ra 1100882 1585343 Dacite 181 ± 4 4.5   González et al., 2015a

* Petrographic classification.
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Figure 8.  Results of U-Pb zircon dating of the sample GOE-1045A
 A) Tera-Wasserburg Concordia diagram. B) Mean age. C) Mean ages of the “populations” and tables of the ages of each zircon. Black vertical bars 
correspond to values rejected by the Isoplot software in the mean age calculations. The age of the likely antecrystals is indicated in blue, and the 
crystallization age of the younger rock zircons is indicated in red. D) Cathodoluminescence image of older zircons in the population, indicating 
crystallization. E) Cathodoluminescence image of younger zircons
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(MSWD) = 3.9 from twenty data points (Figure 8A and 
B), which is interpreted as the likely rock crystallization 
age. The probability density diagram presents two like-
ly populations with two different ages: the population of 
previous zircons of the igneous system (or antecrystals) 
present a mean age of 194.4 ± 1.8 with MSWD = 0.20 
(n=8), and the population of younger zircons present an 
mean age of 185.7 ± 1.7 with MSWD = 1.4 (n = 13), corre-
sponding to the Pliensbachian (Figure 8C). A comparison 
of the cathodoluminescence images of the oldest and the 
youngest zircons yields no differences, which prevented 
us from identifying antecrystals (Figure 8D and E). Most 
of the ablations in the young and old zircons are applied 
to the crystal cores. The Th/U ratio ranges from 0.6 and 
1.7. These values are in line with the typical ratios of ig-
neous zircons (Rubatto, 2002), finding inherited zircons 
from the Triassic (n = 3), Neoproterozoic (n = 9), Meso-
proterozoic (n = 9) and Paleoproterozoic (n = 1).

The sample GR-6851 corresponds to an andesite ac-
cording to the petrographic classification and to a tra-
chyandesite according to the chemical classification. The 
zircons of this rock are short, flattened, prismatic and eu-
hedral, showing few stems and needles, with round and 
slightly oval ends and with sizes smaller than 100 microns, 
and some are fractured. In the cathodoluminescence (CL) 
images, the flattened crystals have oscillatory zonation, 
and the stems show a parallel pattern typical of igneous 
zircons (Figure 9D and E; supplementary file). A total of 
48 ablations were performed in 55 zircons (supplemen-
tary table) disregarding discordances greater than 10% in 
the data interpretation. The age of the entire set of zircons 
is 188.3 ± 2.5, with MSWD = 6.6 from twenty-two data 
points (Figure 9A and B), which is interpreted as a likely 
rock crystallization age. The probability density diagram 
presents two probable populations with two different ages: 
the population of the previous zircons of the igneous or 
anticrystal system present a mean age of 191.6 ± 1.7 with 
MSWD = 2 (n=16), and the population of younger zircons 
present an average age of 181.2 ± 1.7 with MSWD = 1.4 
(n = 6), which corresponds to the Pliensbachian (Figure 
9C). A comparison of the cathodoluminescence images 
of the oldest and youngest zircons yields no differenc-
es, which prevented us from identifying any antecrystals 
(Figure 9D and E). Most of the ablations in the young and 
old zircons are applied to the crystal cores, and the crystals 

subjected to multiple ablations yield very similar ages for 
the rims and cores. The Th/U ratio ranges from 0.58 to 1.6, 
which is in line with the typical ratios of igneous zircons 
(Rubatto, 2002), demonstrating inherited zircons from the 
Triassic (n = 4), Neoproterozoic (n = 4), Mesoproterozoic 
(n = 2) and Paleoproterozoic (n = 1).

The sample GR-6849 corresponds to a tuff according 
to the petrographic classification and to a rhyolite accord-
ing to the chemical classification. The zircons of this rock 
correspond to two populations: one of short and stem-like, 
inequigranular, prismatic and euhedral crystals and anoth-
er of sparse subrounded zircons of oval shapes. In the cath-
odoluminescence (CL) images, the prismatic crystals show 
oscillatory zonation, and some have inherited cores; the 
stem-like crystals show the typical parallel arrangement 
of igneous zircons. A total of 61 ablations were performed 
on 51 zircons (supplementary table), and discordances 
greater than 10% were disregarded in the data interpre-
tation. A single weighted average age of 179.5 ± 2.1 with 
MSWD = 4.3 is assessed from 28 data points. This age is 
interpreted as the rock crystallization age and corresponds 
to the Toarcian (Figure 10A and B). The Th/U ratio ranges 
from 0.6 to 1.7, which is in line with the typical ratios of 
igneous zircons (Rubatto, 2002), demonstrating inherited 
zircons from the Permian (n = 1), Neoproterozoic (n = 11), 
Mesoproterozoic (n = 7) and Paleoproterozoic (n = 2).

Sample GZ-6903 corresponds to a dacite according to 
the petrographic classification. The zircons of this rock 
are part of at least two populations: one of short prismatic 
euhedral crystals with a few stem-like equigranular crys-
tals and the other of oval zircons. In the cathodolumi-
nescence (CL) images, the prismatic crystals demonstrate 
the oscillatory zonation typical of igneous zircons, and 
the oval crystals seem to have metamorphic overgrowths. 
A total of 69 ablations were performed in 50 zircons 
(supplementary Table), and discordances greater than 
10% were disregarded in the data interpretation. A single 
weighted average age of 175.2 ± 2.3 with MSWD = 1.02 is 
calculated from nine data points, which is interpreted as 
the rock crystallization age and corresponds to the Aalen-
ian (Figure 10C and D). The Th/U ratio ranges from 0.57 
and 1.5, which is in line with the typical ratios of igneous 
zircons (Rubatto, 2002), demonstrating inherited zircons 
from the Triassic (n = 2), Permian (n = 2), Neoproterozoic 
(n = 24) and Mesoproterozoic (n = 25).
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Figure 9.  Results for U-Pb zircon dating of sample GR-6851
 A) Tera-Wasserburg Concordia diagram. B) Mean age. C) Mean ages of the “populations” and tables of ages of each zircon. The ages of the likely 
antecrystals are shown in blue, and the crystallization ages of the younger zircons are shown in red. D) Cathodoluminescence images of the 
younger zircons. E) Cathodoluminescence images of the older zircons of the population, indicating crystallization
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Figure 10.  Results for U-Pb zircon dating
 A) Tera-Wasserburg Concordia diagram of sample GR-6849. B) Mean age and probability density diagram of the zircons that define the age of 
sample GR-6849. C) Wetherill Concordia diagram of sample GZ-6903. D) Mean age of sample GZ-6903. E) Tera-Wasserburg Concordia diagram of 
sample GOE-1057. F) Mean age and probability density diagram of the zircons that define the age of sample GOE-1057 (the ages of all the zircons 
are shown in black; the ages of the possible antecrystals are shown in blue, and the crystallization ages of the younger zircons are shown in red). 
The black vertical bars in B and F correspond to values rejected by the Isoplot software in the calculation of the mean age
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Sample GOE-1057 corresponds to a tuff according 
to the petrographic classification. The zircons of this 
rock are prismatic, short and equigranular, with sizes 
ranging from 50 to 100 microns. In the cathodolumines-
cence (CL) images, the zircons that define the age show 
oscillatory zonation, and some have complex zonation 
(cathodoluminescence supplementary file). A total of 94 
ablations were performed in 60 zircons (supplementary 
table), disregarding discordances greater than 10% in 
the data interpretation. The age of the entire set of zir-
cons is 175.5 ± 1.4 with MSWD = 5.3, as assessed from 64 
data points (Figure 10E and F), which is interpreted as 
the likely rock crystallization age. The probability density 
diagram shows two likely populations with two different 
ages (Figure 10E): the population of previous zircons of 
the igneous system or antecrystals yields a mean age of 
188.6 ± 1.8 with MSWD = 0.51 (n=8), and the population 
of younger zircons yields a mean age of 174.8 ± 1.2 with 
MSWD = 3.4 (n = 56), corresponding to the Aalenian 
(Figure 10F). A comparison of the cathodoluminescence 
images of the young and old zircons shows that the oldest 
ages are found for crystal rims or in fractured crystals, and 
some crystals have younger cores (cathodoluminescence 
supplementary file, supplementary table). The Th/U ratio 
ranges from 0.51 to 2.26, which is in line with the ratios 
typical of igneous zircons (Rubatto, 2002), demonstrat-
ing inheritances from the Triassic (n = 1), Neoproterozoic 
(n = 2) and Mesoproterozoic (n = 1).

6.1 Inheritances
To determine the populations of inherited zircons in the 
volcanic rocks of the La Quinta Formation, the inheri-

tance results of six samples dated using the U-Pb zircon 
method are considered (GOE-1045a, GR-6851, GR-6849, 
GZ-6903, GOE-1057 and GR-6854); the ages of each sam-
ple are integrated and grouped. Data with discordances > 
10 % up to 800 Ma and discordances > 5 % in ages older 
than 800 Ma are disregarded, leaving 112 data points that 
meet the condition for analysis.

The inheritances of each sample are shown in the 
Concordia diagrams of Figure 11, which includes the 
samples that do not meet the concordance criteria. The 
populations of inherited zircons in the volcanic rocks 
of the La Quinta Formation are shown in Figure 12, 
and some zircons characteristic of these populations are 
shown in Figure 13. The oldest population dates back to 
~1.911 Ma (n = 3), with one concordant data point and 
two discordant data points, and two important popula-
tions date back to the Mesoproterozoic, at ~1.549 Ma and 
~1.354, with three younger populations of ~1.247 Ma, 
~1.153 and ~1.068 Ma. The most representative popula-
tions of the Neoproterozoic are dated between ~983 Ma 
and ~871 Ma, with two younger populations between 
~618 and ~553 Ma. Four concordant data points, 287.6 ± 
8.2, 269.9 ± 10, 258.8 ± 10 and 251.9 ± 9.4 Ma, are iden-
tified in the Permian. The eight Triassic zircons have a 
mean age of 210.3 ± 5.8. The Mesoproterozoic popula-
tions have Th/U ratios below and above 0.3, which sug-
gests that the zircons have an igneous and metamorphic 
basement. The Neoproterozoic populations have Th/U 
ratios > 0.3, which suggests that they are mostly igneous 
zircons (Rubatto, 2002). The Permian and Triassic zir-
cons generally have Th/U ratio > 1 and are thus igneous 
zircons (Figure 12Q and R and Figure 13A and B).
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Figure 11.  Concordia diagrams with all inherited age data per sample
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Figure 12.  U/Pb geochronology of inherited zircons of the La Quinta Formation. Concordia, probability density, weighted average age and Th/U 
vs. age diagrams
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Figure 13.  Cathodoluminescence images of representative xenocrystals from different populations
 A and B) Triassic and Permian igneous xenocrystals with concentric texture. C) Homogeneous luminescent xenocrystals with weak internal 
structure. D) Crystals with metamorphic overgrowth rims around inherited cores. E) Inherited cores truncated by concentric and clear growth 
rims. F, G, H, I) Mesoproterozoic inherited nuclei, in some cases, with Jurassic igneous rims
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7. dIscussIon

7.1 Ages and correlations
The crystallization ages assessed in some samples show 
high dispersion in the data, which suggests the presen-
ce of older zircons (antecrystals) or Pb loss. The zircon 
structure, shape and texture, which determine the crysta-
llization age, show no differences according to the catho-
doluminescence images for their differentiation. 

The Pb206/U238 ages that determine the crystallization 
of samples GOE-1045A and GR-6851 range from ~15 Ma 
to ~18 Ma. Most of these ages are assessed in zircon cores, 
with similar ages for the rims and cores when tested, su-
ggesting that the differences in age do not result from Pb 
loss. Thus, these two samples likely contain a population 
of antecrystals, and the crystallization age is represented 
in the younger population; however, the information is 
considered insufficient, and therefore, the crystallization 
age of these two rocks is that of the entire population 
that meets the selection criteria described above. Sam-
ple GOE-1057 has a population of older ages (nine data 
points), which are located on the rims of zircon crystals 
and on zircons with internal fracturing, with younger ages 
in the cores of some zircons than on the rims, suggesting 
Pb loss and the absence of antecrystals at these more re-
mote ages. For this reason, we consider the crystallization 
age of this sample to be 174.8 ± 1.2 Ma with MSWD = 3.4 
and hence slightly younger than the weighted average age 
of the entire population, removing these eight ages from 
the calculation. 

The data from this study indicate that the volcanism 
of the La Quinta Formation, in the Perijá mountain ran-
ge, was active from the Lower to the Middle Jurassic. The 
ages suggest that the volcanism began in ~191 Ma (sam-
ples GOE-1045A and GR-6851) and continued until at 
least ~163 Ma (according to the U-Pb age reported by 
Barret et al., 2008 in Venezuela), with at least three likely 
periods of volcanic activity: ~188 Ma, ~179-181 Ma and 
~173-175 Ma, which correspond to the crystallization 
ages of the rocks of the La Quinta Formation (Table 4). 
A comparison of the duration and episodes of crystalli-
zation of the volcanic rocks in units correlated with the 
La Quinta Formation, and which are part of this arc, such 
as the Jurassic vulcanites of the Sierra Nevada de Santa 
Marta (Quandt et al., 2018; Rodríguez et al., 2019b), No-

reán Formation (Correa et al., 2019) and Saldaña For-
mation (Rodríguez et al., 2016), shows that the period 
of volcanic activity is virtually the same in the different 
volcanic units that make up the arc or fall within the 
crystallization period of the arc (Table 5). Furthermore, 
this period matches the duration of plutonism described 
by Rodríguez et al. (2018) and Rodríguez et al. (2020) in 
VSM and in SNSM. Although the geochronological data 
collected in the La Quinta Formation are not abundant, 
the petrographic and chemical composition of the rocks 
and the U-Pb ages suggest that the volcanism of the La 
Quinta Formation evolved from basic to acidic and from 
metaluminous to peraluminous, initially generating lava 
flows of basaltic trachyandesites and subsequently trach-
yandesites and dacites and ultimately becoming explosive 
and generating rhyolites and rhyolitic pyroclastic rocks in 
this region. This volcanism occurred in a subaerial set-
ting, developing hematite, which stained the rocks a red-
dish color. The dates estimated in previous studies using 
the U-Pb method on volcanic rocks indicate ages ranging 
from 176 to 182 Ma (González et al., 2015 a, b) on the 
western flank of the Perijá mountain range and of 163 ± 5 
Ma in Venezuela (Dasch, 1982). Barrett et al. (2008) loca-
ted this unit between the Lower and Middle Jurassic, ac-
cording to fossil evidence of Ornithischian Lesothosaurus 
sp. and reptile remains (in Nova et al., 2012).

The comparison of the geochronology, geochemistry 
and petrography results of this study with those repor-
ted for the Noreán Formation of the Santander massif in 
the San Lucas mountain range (Ingeominas-UIS, 2006a, 
2006c, 2006d, 2006e; Leal Mejía, 2011; González et al., 
2015a, 2015b and Correa Martínez et al., 2019), for the 
volcanic units of Sierra Nevada de Santa Marta (Guata-
purí and Corual formations, Caja de Ahorros, La Paila 
and Los Clavos ignimbrites, Los Tábanos Triassic spilites, 
keratophyric porphyries and rhyodacites and Golero rh-
yolites) (Tschanz et al., 1969a; Maze, 1984; Quandt et al., 
2018, Rodríguez et al., 2019c), for Ipapure-Cerro de La 
Teta rhyodacites in Upper Guajira (Radelli, 1960; Rodrí-
guez and Londoño, 2002; Zuluaga et al., 2015) and for the 
Saldaña Formation and Pitalito vulcanites in the Upper 
Magdalena Valley (Rodríguez et al., 2016; Zapata et al., 
2016) shows that all the volcanic rocks of these units are 
correlated with the volcanic rocks of the La Quinta For-
mation. 
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The U-Pb zircon geochronology results of the volca-
nic units show similar crystallization periods and geo-
chemical behavior of major and trace elements sugges-
ting that they were formed from the same continental 
volcanic arc (Rodríguez et al., 2016; 2018, 2019b, Correa 
et al, 2019, Quandt et al., 2018), which was subsequently 
dispersed along the paleomargin of northern South Ame-
rica (Bayona et al., 2010; Villagómez et al., 2015; Zapata 
et al., 2016; Zuluaga et al., 2015, Rodríguez et al., 2019a).

7.2 Inheritance and basement 
The presence of xenocrystals and inherited zircon cores 
in the rocks of the La Quinta Formation is most likely 
related to the melting of older wall rocks. This process 
commonly occurs in magmatic systems. The formation 
of antecrystals, which is more debatable and difficult to 
determine, was found in some of the rocks analyzed in 
this study, which is in line with the crystallization episo-
des of the arc (Table 5).

The ages of the inherited zircons in the volcanic rocks 
of the La Quinta Formation match the ages and inheri-
tances described by Ibáñez Mejía et al. (2015) for the Pu-
tumayo orogen. These authors suggest that the inherited 
zircons with ages older than 0.9 Ga possibly derived from 
metasedimentary rocks of the Mesoproterozoic basement 
and were contributed to by an older Cratonic domain. In 
our case, the inherited zircons were incorporated into 
Jurassic magmas, which produced the La Quinta For-
mation, among others, through melting of the Putumayo 
orogen crust. Ages between 1.15 and 1.10 Ga, according 
to Ibáñez Mejía et al. (2015), are associated with accretion 
of arc edges against the continental margin, triggering an 
early metamorphic event, and ages of approximately 0.99 
Ga have been interpreted as the Amazonia incorporation 
into the core of Rodinia during the collision with the 
Baltic (Ibáñez Mejía et al., 2015). This would largely exp-

lain the oldest inheritances of the volcanic arc of 0.9 Ga, 
which would be contributed to the arc by the basement 
of the Putumayo orogen that belongs to the Chibcha Te-
rrane (Restrepo et al., 2009). This terrane currently spans 
across part of the Cordillera Oriental [Eastern Ranges] 
and the easternmost section of the Cordillera Central 
[Central Andes] and consists of a Neoproterozoic crys-
talline basement (Putumayo orogen), Paleozoic marine 
sedimentary sequences and intrusions and volcanic roc-
ks of arcs formed during the Carboniferous-Permian and 
the Lower-to-Middle Jurassic. After the formation of the 
arcs, the Chibcha Terrane was divided into blocks scatte-
red along the paleomargin of northern South America, as 
we currently know it (Rodríguez et al., 2019a).

The ages of 618 and 553 Ma are similar to the in-
heritances described by Rodríguez et al. (2019a) in the 
plutons of the Permian arc, which, according to Nova et 
al. (2018), possibly correspond to the zircons of units in-
cluded in the Mixteco and Maya blocks of Mexico. The 
source of the Triassic igneous xenocrystals is unknown; 
most likely, they are related to minor igneous bodies still 
unidentified in the Chibcha Terrane and in general ol-
der than plutonic rocks of intrusions dated between the 
Triassic and the Lower Jurassic of the Santander massif.

A comparison of the ages of the xenocrystals and 
inherited zircon cores of the La Quinta Formation with 
other correlated volcanic units suggests that all these vol-
canic units have similar zircon inheritance, which would 
indicate that they shared the same preexisting basement, 
on which all the arc units were emplaced: the Noreán 
Formation has zircon inheritances from the Mesoprote-
rozoic (~1400 Ma, n = 1) and from the period between 
the Mesoproterozoic and Neoproterozoic (~1.050 and 
950 Ma, n = 3) (Correa Martínez et al., 2019); the Sal-
daña Formation has inheritances from the Mesoprote-
rozoic (~1.460, ~1.570 and ~1.630 Ma), Neoproterozoic  

Table 5.  Comparison between the crystallization period of volcanic arc units and periods of increased crystallization, based on U-Pb zircon ages

Lithological unit Activity lapse Crystallization episodes Source

Saldaña Formation and Pitalito 
vulcanites ~190 to ~164 Ma ~190-186 Ma, ~183-178 Ma, ~173-168 Ma Rodríguez et al. (2016)

Noreán Formation ~194 to ~175 Ma ~192 Ma, ~185 Ma, ~175 Ma Correa et al. (2019)

Volcanic units of SNSM ~196 to ~165 Ma ~195 Ma, ~186 Ma, ~178-175 y ~168 Ma Rodríguez et al. (2019b)

La Quinta Formation ~196 to ~164 Ma ~188 Ma, ~179-181 Ma, ~173-175 Ma Present study

Cerro de La Teta and Ipapure 
rhyodacites ~ 184 to ~181 Zuluaga et al. (2015)
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(~906 to ~1.060 Ma and ~510 Ma), Permian (~270 Ma) 
and Triassic (~223 Ma) (Rodríguez et al., 2016; Zapa-
ta et al., 2016); the Jurassic volcanic rocks of the Sierra 
Nevada de Santa Marta have Mesoproterozoic, Neopro-
terozoic, Paleozoic, Permian and Triassic xenocrystals, 
as well as ages contemporary with Pan-African orogeny 
events during the Devonian (400-650 Ma) (Rodríguez et 
al., 2019c).

7.3 Tectonic model
Different arc models have been proposed for Jurassic 
magmatism: Bayona et al. (2010), based on paleomagne-
tic data, consider that blocks moved northward relative to 
a point on the craton and formed an oblique-subduction 
margin along the South American paleomargin. Villa-
gómez et al. (2015), similar to Bayona et al. (2010), con-
clude that the Jurassic blocks of the Upper Magdalena, 
Cordillera Central [Central Andes], San Lucas mountain 
range and Sierra Nevada de Santa Marta are allochthons 
formed in an arc and in a back-arc and the Jurassic rocks 
of the Santander massif are autochthonous and related to 
a rift; Spikings et al. (2015) postulate that the westward 
shift in Jurassic magmatism over time is due to slab roll-
back and/or trench retreat; Bustamante et al. (2016) and 
Quandt et al. (2018) embrace the idea of highly oblique 
subduction; the former explain the compositional chan-
ges by reduced sediment melting and long-term source 
evolution (proposed by Leal Mejía, 2011); Zapata et al. 
(2016) consider the volcanic and plutonic rocks to share 
the same arc history and to be related to a fragmented Ju-
rassic magmatic belt; Zuluaga et al. (2015) discuss the re-
lationship between the plutons and Jurassic volcanic roc-
ks of La Guajira and conclude that they were formed in 
the same axis, which would imply that there was no back-
arc and that they formed within the arc; Rodríguez et al. 
(2018) consider the arc to be represented by volcanic and 
plutonic rocks that were formed in the Upper Magdalena 
Valley during three high-activity magmatic pulses (from 
188 to 186 Ma, from 183 to 178 Ma and from 173 to 168 
Ma), that the plutons tended to rejuvenate from west to 
east, that the north of the Ibagué Batholith is not part of 
this arc and that this batholith was emplaced in an Upper 
Jurassic orogen (Blanco Quintero et al., 2014, Rodríguez 
et al., 2020). These authors attribute the compositional 
changes and the migration of the plutons to erosion of the 

accretionary prism due to the increased water flow from 
the subduction slab, consequently decreasing the solidus 
temperatures; Rodríguez et al. (2020) propose three mag-
matic arcs for the Jurassic magmatism of the northern 
Andes, each one formed at different periods, with their 
own chemical and petrographic composition and empla-
ced in different orogens. 

The geochemistry and geochronology data presented 
here show the correlation between the volcanic units that 
make up the different blocks of the northern Andes (Sal-
daña Formation, Pitalito vulcanites, Noreán Formation, 
SNSM Jurassic volcanic units, La Quinta Formation and 
Cerro de La Teta and Ipapure rhyodacites), which sug-
gests that from Ecuador through the Upper Magdalena 
Valley to La Guajira, volcanism was generated in a similar 
time span of ~30 Ma, from 195 Ma to 164 Ma, and that 
the pulses or episodes of peak magmatic activity were 
virtually identical in these units and in their plutonic 
equivalents, in contrast to an oblique subduction model, 
considering multiple arcs. 

According to some authors, the Jurassic units corres-
pond to a single arc that evolved from east to the west over 
an extended period of time. Based on the above, oblique 
subduction is postulated considering the Jurassic pluto-
nism and volcanism data of the Upper Magdalena Valley 
(Rodríguez et al., 2016, Zapata et al, 2016; Bustamante 
et al., 2016; Rodríguez et al., 2018), San Lucas mountain 
range (Leal Mejía, 2011; Correa et al., 2019), Sierra Ne-
vada de Santa Marta (Tschanz et al., 1969a; Quandt et 
al., 2018 y Rodríguez et al., 2019b) and Upper Guajira 
(Zuluaga et al., 2015), which show similar composition 
and spatial behavior and considerably different chemical 
and petrographic composition from the Triassic-Juras-
sic units of the Santander massif (Rodríguez et al., 2017, 
2020) and from the north of the Ibagué Batholith. 

The analysis of the data of the Upper Magdalena Va-
lley and Sierra Nevada de Santa Marta shows coinciden-
ces when describing the compositional variation in the 
plutons of these two blocks (Tschanz et al., 1969; Jarami-
llo and Escovar, 1980; Núñez et al., 1996), corroborating 
published petrographic and geochemical results (Rodrí-
guez et al., 2018 y Rodríguez et al., 2019b). The studies by 
Jaramillo and Escovar (1980) and by Núñez et al. (1996) 
describe eastward macroscopic and compositional chan-
ges in plutons in the Upper Magdalena Valley and show 
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that the bodies are more acidic and granitic in the same 
direction. Tschanz et al. (1969) separated the plutons of 
Sierra Nevada de Santa Marta into two batholith belts, 
a central belt and southeastern belt, and they described 
their macroscopic differences, stating that the southeas-
tern belt was granitic. 

In this context and considering the volume of infor-
mation published, the arc to which the La Quinta Forma-
tion belongs shows eastward compositional and temporal 
migration that was most likely caused by erosion of the 
trench subduction front as the Farallones plate slid under 
the continental paleomargin during the ~30 Ma years of 
the duration of the arc. This continental arc is characte-
rized by erosion, with eastward compositional migration 
and rejuvenation.

The continental margin, in the northern Andes, has 
been an accretion margin of blocks or terranes. Much of 
this accretion is represented by the metamorphic sequen-
ces of the Cordillera Central [Central Andes] and by the 
volcanic rocks of the Cordillera Occidental [West Andes]. 
In some periods, the margin has behaved as an erosional 
margin. In this study, the margin was considered erosio-
nal between the Lower and Middle Jurassic, during the 
formation of this Jurassic arc. 

8. conclusIons

The La Quinta Formation is a volcano-sedimentary unit 
composed mainly of detrital sedimentary rocks (conglo-
merates, sandstones and mudstones) and subordinate 
chemical sedimentary (limestones) and extrusive and 
pyroclastic volcanic rocks. The extrusive rocks have a 
basaltic, andesitic, dacitic and rhyolitic composition, and 
the pyroclastic rocks are crystal-vitreous and lithic tuffs 
of ash and lapilli size and agglomerates. The chemical 
classification of the extrusive rocks based on higher oxi-
des matches the modal classification. The tuffs are chemi-
cally classified as dacites and rhyolites.

The chemistry results from this study and from pre-
vious studies indicate that the volcanic rocks were formed 
in a subduction-related setting in a volcanic-plutonic arc 
with compositional variations and eastward rejuvenation 
related to an erosional continental margin arc.

The ages suggest that the volcanism began in ~191 
Ma (Sinemurian) and continued until ~164 Ma, with at 

least three periods of increased volcanic activity: 186 Ma 
(Pliensbachian), 179-181 Ma (Toarcian) Ma and 173-175 
(Toarcian), and continued until the Middle Jurassic (Ca-
llovian). 

The periods of peak volcanic activity are correlated 
with similar periods in volcanic units during the Lower 
and Middle Jurassic in the Upper Magdalena Valley (Sal-
daña Formation and Pitalito Vulcanites), the San Lucas 
mountain range (Noreán Formation), Sierra Nevada de 
Santa Marta (Guatapurí and Corual formations, Caja de 
Ahorros, La Paila and Los Clavos ignimbrites, Triassic 
spilites, keratophyric porphyries, Los Tábanos Rhyodaci-
te and Golero Rhyolite), and the Cocinas mountain range 
(Ipapure-Cerro La Teta Rhyodacite). All these units, in-
cluding the La Quinta Formation, have similar chemical 
and petrographic compositions; in these units, the inhe-
rited zircons mark similar populations and were formed 
from the same Plutonic volcanic arc along the South 
American paleomargin on a crystalline basement con-
sisting of Neoproterozoic rocks, Paleozoic sedimentary 
units and Permian arc plutons, which appear in tectonic 
blocks as we know them today.

The lack of xenocrystals with Ordovician ages in all 
the correlated volcanic units of the Lower and Middle 
Jurassic indicates that the La Quinta Formation did not 
develop in the basement of the Famatinian orogen of the 
Santander massif but was instead established in rocks of 
the Neoproterozoic basement of the Putumayo orogen 
and in intrusions of the Permian arc predating the Lower 
and Middle Jurassic arc.
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