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Abstract
The deployment of renewable energy technologies will play a crucial role in the global transition to a low-carbon economy and 
ultimately in the fight against global warming. However, this transition could face important problems because most of those 
technologies rely on the steady supply of critical minerals. Colombia, thanks to its hydrological resources, has relied on the hydro-
power for electricity generation. However, the government has implemented measures to back-up the energy system in draught 
periods and, consequently, fossil fuels-based plants have increased the market share and with these, CO2 emissions. This study 
assesses the mineral demand in Colombia in the period 2020-2050 for the rare earth elements embedded in the deployment of 
wind power technologies in four different climate policy scenarios in order to establish whether they could face geological bott-
lenecks that could ultimately hamper the transition to a low-carbon economy. The Gigawatts (GW) of future capacity additions 
in the energy system are converted into tons of metal using published metal intensities of use and assumptions of Colombia’s 
technological pathway. Then, the cumulated mineral demand is compared against current mining production rates and geological 
reserves to establish geological bottlenecks. The results show that the reserves will not pose any threat to its transition. However, 
when compared to current mining rates, the mineral demand in 2050 could pose a problem for the supply of minerals. Finally, 
this study gives some policy recommendations that could be used to mitigate these issues, such as substitution, improved circular 
economy and sound technological choices.
Keywords:  Renewable energy technologies, mineral demand, climate change mitigation, Dysprosium, Neodymium.
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R esumen 
El despliegue de tecnologías de energía renovable desempeñará un papel crucial en la transición mundial hacia una economía con 
bajas emisiones de carbono y, en última instancia, en la lucha contra el calentamiento del planeta. Sin embargo, esta transición po-
dría enfrentar problemas importantes porque la mayoría de esas tecnologías dependen del suministro constante de minerales crí-
ticos. Colombia, gracias a sus recursos hidrológicos, ha dependido de la energía hidroeléctrica para la generación de electricidad. 
Sin embargo, el gobierno ha implementado medidas para respaldar el sistema energético en períodos de sequía y, en consecuencia, 
las plantas de energía basadas en combustibles fósiles han aumentado la cuota de mercado y con ellas las emisiones de CO2. Este 
estudio evalúa la demanda de minerales de los elementos de tierras raras en Colombia en el período 2020-2050 incorporados en 
las tecnologías de energía eólica en cuatro escenarios de política climática con el fin de establecer si estas podrían enfrentar cuellos 
de botella geológicos que, en última instancia, podrían obstaculizar la transición a una economía baja en carbono. Los gigavatios 
(GW) de las futuras adiciones de capacidad en el sistema energético son convertidos en toneladas de metal utilizando intensi-
dades de uso de metales publicadas y suposiciones de la trayectoria tecnológica de Colombia. Luego, la demanda acumulada de 
minerales es comparada con las tasas actuales de producción minera y las reservas geológicas para establecer los cuellos de botella 
geológicos. Los resultados muestran que las reservas no supondrán ninguna amenaza para la transición. Sin embargo, si se com-
para con las tasas de extracción actuales, la demanda de minerales en 2050 podría ser un problema para la oferta de minerales. 
Por último, en este estudio se formulan algunas recomendaciones de política que podrían utilizarse para mitigar estas cuestiones, 
como la sustitución, la mejora de la economía circular y las opciones tecnológicas racionales.
Palabras clave:  Tecnologías de energía renovable, demanda de minerales, mitigación del cambio climático, Disprosio, Neodimio.

1.  IntroductIon

The worldwide transition from high to low-carbon economies 
will require the extraction and processing of a significant volume 
of rare earth elements (REEs) and other minerals which are used 
in Renewable Energy Technologies (RETs). The future physical 
availability of some of those minerals has become a source of 
concern, because the reliability of their supply could disrupt this 
transition, the economic development and ultimately, the fight 
against climate change. Especially sensitive are the transporta-
tion and energy sectors, in which the metal intensity shows a 
dramatic increase in the years to come (Koning et al., 2018).

For the purpose of this paper, critical minerals are those 
minerals considered important for any type of technology and 
which at the same time could face supply disruptions, for ins-
tance, because the mineral deposits are concentrated in just 
a few countries (McCullough and Nassar, 2017). The REEs,  
—which are classified as critical minerals— play an important 
role in the development of RETs. They are used in a relatively 
large amount of applications in key technologies being de-
veloped to provide a sustainable mobility and energy supply 
(Alonso et al., 2012). Wind and solar photovoltaic technolo-
gies, which make up a segment of RETs, use a wide variety of 

REEs. Thus, if they were to be deployed on a large scale, as 
will be expected to decarbonize the economy in the future, this 
could pose a threat to such a transition.

The demand for fossil fuels to power up the energy pro-
duction in Colombia has been increasing steadily thanks to a 
growing economic sector. Thus far, most of electricity produc-
tion has been supplied by large hydroelectric power stations, 
but because of climate change and seasonal climatic oscilla-
tions such as El Niño that make hydropower less reliable, fossil 
fuel-powered energy has been gaining share in electricity mix 
to back up the system in high demand conditions.

Colombia’s low-carbon strategy is still in its initial stages. 
The 1715 law of 2014 aimed to implement plans, policies and 
projects to promote the mitigation of greenhouse gases (GHG) 
emissions without compromising social and economic growth 
(Calderón et al., 2016), as well as to incorporate RETs into the 
national electricity grid. However, thus far, Colombia has fai-
led to set a course of direction for the implementation of such 
technologies and policies.

Since the 1980s, many authors (namely, Hayes and McCu-
llough, 2018 and references therein) studied criticality issues and 
its effects on the global deployment of RETs. In recent years the-
re has been a boom in the research dealing with how the future 
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global deployment of sustainable technologies could be affected 
by the physical availability of critical minerals, such as the REEs 
(Koning et al., 2018; Manberger and Stenqvist, 2018; Deetman 
et al., 2018). However, to date there has been a lack of studies 
on how the deployment of RETs in developing countries could 
impact the global market, and more specifically on how the im-
plementation of different climate-policy scenarios in developing 
countries could affect the global demand for metals.

Therefore, this study aims to fill the research gap described 
above by analyzing how the adoption of RETs would affect the 
global demand for REEs in the near to medium future. This 
study is limited to two REEs (namely dysprosium and neody-
mium) that are embedded in the wind power generation plans 
in Colombia during the 2020-2050 period.

The analysis is conducted by using the outcome of Calde-
rón et al. (2016), where they assess the effect of carbon taxes 
and abatement targets on CO2 emissions in four different cli-
mate-policy scenarios using four models form the CLIMA-
CAP-LAMP project (van der Zwaan et al., 2016), giving as a 
result multiple pathways of how the future energy technologies 
would deploy during the 2020-2050 period.

Specifically, the variable wind energy capacity additions (in 
GW) of their research will be used as the main input for the 
purposes of this research. They are converted here into quanti-
ty of metals (kg) embedded in the wind power generation sys-
tems by employing intensities of use obtained in the published 
literature. The derived demand for metals in Colombia is then 
compared against current mining rates and reserves, ultima-

Figure 1.  Periodic table of elements
 The REEs are those elements highlighted by the rectangle. Source: Los Alamos National Laboratory, Chemistry Division, https://periodic.lanl.gov/images/perio-
dictable.pdf
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tely allowing to establish whether the available resources are 
sufficient to meet future demand or whether there could be 
potential shortages of mineral resources that would affect the 
deployment of RETs. Finally, this study sheds light on whether 
the REEs would experience geological bottlenecks that could 
make them more expensive and concludes with a proposal for 
some policy options to deal with such issues.

2.  background: rare earth eleMents, renewable energy te-
chnologIes and the MIneral requIreMents of the transItIon 
to a low carbon econoMy 

2.1. Rare Earth Elements
Rare-earth elements (REEs) range from atomic number 57 
(lanthanum) to 71 (lutetium) in the periodic table of elements 
and are commonly referred to as “lanthanides” (Figure 1, Table 
1) (van Gonsen et al., 2017). Yttrium (atomic number 39) and 
scandium (atomic number 21) are also regarded as REEs as 
they tend to occur in the same ore deposits as the lanthanides 
and show similar chemical and physical properties.

The term rare earth is really a misnomer, since they are not 
as rare as the name implies. Van Gonsen et al. (2017) define 
its origin: “They were named rare earth because most were 
identified during the 18th and 19th centuries as ‘earths’, and, in 
comparison with other ‘earths’, such as lime or magnesia, they 
were relatively rare”. They are more abundant, on average, than 
silver, gold, or copper in the Earth’s crust (Table 1).

Not long ago, the REEs were familiar only for a relatively 
small number of people, such as chemists, engineers, and geo-
logists. However, over the last decades these elements have gai-
ned considerable importance mainly due to three reasons: 1) 
their special properties which have made of them indispensa-
ble components of the modern technology; 2) the near-mono-
polistic market where China controls world production, and 3) 
the world´s heavy dependence on China´s production and its 
controlled supply (van Gonsen et al., 2017).

Thanks to their unique magnetic, phosphorescent, and catalytic 
properties, over the last couple of decades the world has seen a no-
teworthy increase in the utilization of REEs in technologies deemed 
important such as clean energy sources and defense sectors.

Consequently, the strategic value of these elements was quic-
kly recognized and the political and economic issues surrounding 
the global supply gained more visibility. Since then, the number 
of exploration activities aiming to discover economic deposits of 
REEs have dramatically increased (van Gonsen et al., 2017).

2.1.1. Demand and applications
The rate of economic growth and the development of new 
technologies are the two major drivers of demand for REEs 
(Mancheri et al., 2019). Sustainable technologies are one of the 
biggest sectors which requires REEs, including magnets, phos-
phors, catalysts, and batteries, and currently accounts for over 
60% of the total demand; a tendency that will tend to increase 
fueled mostly by the heavy investments in clean energy.

The REEs are used in a variety of industrial and technolo-
gical applications that take advantage of their unique physical 
and chemical properties. Table 2 shows the amount of REEs 
demanded by different intermediate products, which is expec-
ted to increase between 7-8% annually (Mancheri et al., 2019).

The main consumer of REEs are the permanent magnets 
made from REE alloys. Particularly important are the neody-
mium-iron-boron magnets since they are the strongest mag-
nets currently known, especially when space and weight are 
critical variables. These magnets are used in hard disk drives, 
cell phones, electric motors for hybrid vehicles and windmills, 
and actuators in aircraft technologies (van Gonsen et al., 2017).

Another major consumer are the catalytic converters based 
on cerium used in cars and the catalytic converters based on 
lanthanum used in the petroleum refining industry, followed 
by the use in the glass industry because they provide color and 
special optical properties to glass as well as glass polishing (ce-
rium and lanthanum) (van Gonsen et al., 2017).

Table 1.  List of REEs with their crustal abundance
REEs Symbol Atomic number Crustal abundance (ppm)

Lanthanum La 57 39

Cerium Ce 58 66.5

Praseodymium Pr 59 9.2

Neodymium Nd 60 441.5

Promethium Pm 61 Does not occur in nature

Samarium Sm 62 7.05

Europium Eu 63 2.0

Gadolinium Gd 64 6.2

Terbium Tb 65 1.2

Dysprosium Dy 66 5.2

Holmium Ho 67 1.3

Erbium Er 68 3.5

Thulium Tm 69 0.52

Ytterbium Yb 70 3.2

Lutetium Lu 71 0.8

Yttrium Y 39 33

Scandium Sc 21 22

  For the purpose of comparison, the average crustal abundances for silver, gold 
and copper are 0.075, 0.004, and 60, respectively. Source: van Gosen et al. (2014).

Boletin Geologico 48 2.indd   64Boletin Geologico 48 2.indd   64 3/12/21   11:59 a. m.3/12/21   11:59 a. m.



65 S e r v i c i o  G e o l ó g i c o  C o l o m b i a n o

The role of Rare Earth Elements in the deployment of wind energy in Colombia

The production of steel alloys and the removal of impu-
rities in the steel-making industry uses cerium, lanthanum, 
neodymium, and praseodymium, commonly present in the 
form of a mixed oxide known as mischmetal.

Flat screens, some incandescent, fluorescent, and LED li-
ghtning used in phosphors consists of REEs, particularly yt-
trium, cerium, lanthanum, europium, and terbium. Medical 
applications such as magnetic resonance imaging (MRI) use 
gadolimium phosphors (van Gonsen et al., 2017).

2.1.2. Supply
China controls the global REEs industry and has established 
a dominant position in the entire value chain, from resource 
extraction to manufacturing of intermediate products such as 
magnets; products that are critical to high-growth industries 
such as the renewable energy technologies (RETs) (Mancheri 
et al., 2019).

Mine production data published by the United States Geo-
logical Survey (USGS, 1996-2020) indicate that China produ-
ced more than 90% of the total world supply between 2003 and 
2012. Afterwards, its contribution to the total world supply has 
decreased from 86% in 2013 to 63% in 2019 (Figure 2, Table 3). 
However, it must be noted that the production volume shown 
for China in Table 3 does not include undocumented (“ille-
gal”) production which can be rather significant. According to 
(Shen et al., 2020), there are estimates indicating that the ille-
gal-sector production comprises, after 2017, between 20% and 
50% of China´s total production, even after China announced 
new policies to curtail illegal production. As a result, total 
mine production in China, for example for 2019, can account 
for around 71% of the total world supply.

There are several reasons why China controls the REE mar-
ket, including government support for the industry, low labor 

and production costs, and a lax environmental regulatory fra-
mework (Zhou et al., 2016). These factors have allowed China 
to enjoy a monopolistic market, while countries like the US, 
which had to close mines such as Mountain Pass, began to im-
port REEs to satisfy their demand (USGS, 1996-2020).

In 1999, China introduced an export quota on REEs “to 
control total production and illegal activities at the border of 
the country …” and “…put specific restrictions on the structu-
re of export quotas to support the development of the downs-
tream sector” (Shen et al., 2020). These quotas reduced the  

Table 2.  Global rare earth elements (metric tons of rare-earth-oxide (REO) 
equivalent) demand by type of intermediate product in 2017

Application Total (tons) Market share (%)

Magnets 51 000 30

Catalysts 30 000 18

Metal alloys 31 000 18

Polishing 22 000 14

Glass 9500 6

Other 10 500 6

Ceramics 8500 5

Phosphors 5000 3

Total 167 500 100

 Source: Mancheri et al. (2019).

Figure 2.  World mine production of rare-earth oxides by country and year 
since 1962 to 2012
 Source: Taken from van Gonsen et al. (2017).

Table 3.  Production and reserves of REEs (metric tons of rare-earth-oxide 
(REO) equivalent) for world producers

Country Mine production (tons) Reserves (tons)

2017 2018 2019

China 105 0001 120 0001 132 0001 44 000 000

Brazil 1700 1000 1000 22 000 000

Vietnam 200 400 900 22 000 000

Russia 2600 2600 2700 12 000 000

India 1800 1800 3000 6 900 000

Australia 19 000 21 000 21 000 3 300 0002

Greenland - - - 1 500 000

United States - 18 000 26 000 1 400 000

Tanzania - - - 890 000

Canada - - - 830 000

South Africa - - - 790 000

Burma (Myanmar) NA 19 000 22 000 NA*

Burundi - 630 600 NA

Thailand 1300 1000 1800 NA

Other countries 1803 60 - 310 000

World total 132 000 190 000 210 000 120 000 000
 1 Production quota; does not include undocumented production; 2 For Austra-
lia, Joint Ore Reserves Committee-compliant reserves were 1.9 million tons; 3 
Includes Malaysia; * Not available. Source: USGS (1996-2020).
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output of Chinese exports by nearly 60% compared to 2008 
levels (Haque et al., 2014). Consequently, large price increa-
ses were common due to the mismatch between a growing de-
mand and a declining supply. In 2014, China agreed to end 
those restrictions after multiple complaints from the World 
Trade Organization (WTO) and countries like USA, Japan, 
and the European Union.

After China started to impose quotas, licenses and taxes in 
2010, citing as the main reasons the need to limit resources for 
domestic consumption and environmental concerns, the world 
reacted in different ways, including: increasing its stockpile; in-
creasing exploration; developing new deposits; and increasing 
the efforts to reuse, recycle, and find new substitutes among 
the REEs. 

Most of the world’s REEs production comes primarily na-
tural resources, although recycling as a source of raw materials 
is increasingly seen as a viable option. However, the recycling 
process is still in its initial stages and has to overcome several 
problems before being considered a realistic option, such as 
industrial scale recycling plants, and the small amount of the-
se elements incorporated in the technological products which 
makes the recovery an expensive undertaking.

2.2. Wind power technologies
There are two ways to obtain energy from the wind, either by 
directly converting mechanical power or by transforming ki-
netic energy. The latter can be achieved through a wind turbine 
which converts wind energy into mechanical power, which can 
then be utilized for different purposes.

The wind turbines can be classified as either direct drive 
(no gear) or those who use gearbox electromagnets according 
to the drivetrain condition in a wind generator system (Figu-
re 3) (Tong et al., 2010). In the first group the turbine blades 
are connected directly to the generator, which allows them to 
rotate at the same speed, but at low revolutions per minute 
(10-30 rpm) (Pavel et al., 2017). The electric energy is indu-
ced by a magnetic field which can be provided either by per-
manent magnet synchronous generators (PMSGs) or electro-
magnets which need excitation and consumes reactive power 
(Lacal-Arantegui, 2015). These types of turbines are popular 
among offshore windfarms because of their increased reliabili-
ty and low maintenance costs (Habib and Wenzel, 2014).

Different metals can be employed to produce the perma-
nent magnet. PMSG turbines with NdFeB (which stands for 
neodymium, iron, and boron) are the most common, however, 

they contain low but vital amounts of praseodymium (Pr), dys-
prosium (Dy) and terbium (Tb), which some authors consider 
as critical minerals (Tokimatsu et al., 2018; Grandell et al., 2016; 
Brumme, 2011). The conventional electromagnets generators, 
which in 2015 made up to 77% of the global installed capacity, 
are produced using magnetic steel and copper windings (Pavel 
et al., 2017). These metals are not currently classified as critical 
minerals; however, these turbines are generally heavier and less 
efficient than turbines using permanent magnets (Manberger 
and Stenqvist, 2018). The latest generation among direct drive 
generators is the HTS (high-temperature superconductors), 
which allows for low weight turbines and do not require criti-
cal minerals except for yttrium. Nevertheless, they are current-
ly in research stage (Manberger and Stenqvist, 2018).

Among the geared turbines, there are two groups: the mid-
speed drive (≥ 80 rpm) and high-speed drive (≥ 900 rpm). 
Here, a gearbox allows for the generator to rotate faster than 
the blades to gain a higher power output (Pavel et al., 2017).

In the mid-speed geared turbines, the generator contains 
lower quantities of permanent magnets than the low speed 
configuration. In high-speed generators, a transmission system 
converts the low speed of the wind turbines into high speed 
in the generator (≥ 900 rpm). Currently, the onshore market 
is dominated by the traditional doubly-fed induction genera-

Figure 3.  Wind power technologies
 PM = permanent magnet, HTS = high-temperature super conductor, SG = 
synchronous generator, AG = asynchronous generator. Source: Taken from 
Manberger and Stenqvist (2018).
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tor (DFIG), with capacities up to 6 MW, which is considered 
a high-speed technology (Pavel et al., 2017). Altogether, the 
geared drive system is heavier and requires more maintenance 
than the direct drive, which makes it less competitive for larger 
plants in offshore locations (Manberger and Stenqvist, 2018).

2.3. Mineral demand in a low carbon economy
There is a vast literature on the future availability of critical mi-
nerals such as the REEs in the deployment of RETs that would 
be required to meet certain climate mitigation targets. Thus, 
this section presents an overview of the major studies concer-
ning renewable energy technologies.

Based on the future requirements for a low-carbon eco-
nomy and energy technologies together with long-term so-
cioeconomic scenarios, Koning et al. (2018) examine how the 
gradual introduction of climate policies by 2050 would prompt 
the onset of supply bottlenecks of a range of metals, including 
Fe, Al, Cu, Ni, Cr, In, Nd, Dy, Li, Zn, and Pb. Their results show 
that, compared with actual levels, the production of almost all 
metals analyzed would have to increase significantly to keep 
up with a low-carbon energy system transition. However, given 
their assumption that the supply of these metals used in other 
sectors of the society will increase gradually, the supply of me-
tals for such a transition would not be a problem. Yet, the com-
bination of special conditions, characteristics of the mining in-
dustry such as the lack of certainty on the return of investment, 
long lead times in expanding mining production, and social 
and environmental impacts that delay the expansion of mining 
capacity could create supply-demand imbalances. One aspect 
which is not considered in their paper is the importance of re-
cycling and substitution in RETs.

Manberger and Stenqvist (2018) assess what makes a re-
source critical and how can it be mitigated, by analyzing di-
fferent technological development trajectories affecting the 
demand for metals over time using technological substitutes 
and the role of recycling to meet supply needs. In their study, 
twelve metals were used, namely Co, Cu, Dy, Ga, In, Li, Nd, 
Ni, Pt, Se, Ag, and Te, which are critical for renewable energy 
production, storage or end-use technology up to 2060. They 
conclude that the growth rate of solar power, wind power, and 
electric motors is not likely to be constrained by the reserves 
of these metals, since they would continue growing to keep up 
demand. Therefore, given that metal use intensities have im-
proved historically, and will continue to do so, the growth in 
mining intensity and cumulative demand will be much lower. 

This would allow the recycling of metals to achieve a bigger 
share of the demand by 2060.

Tokimatsu et al. (2018) develop a bottom-up cost-minimi-
zing model to calculate the aggregate metal requirements in 
energy technologies including hydrogen under several climate 
policy scenarios reflecting uncertainty in future metal intensi-
ties, recycling rate and the lifetime of energy technologies. Po-
tentially “critical” metals were identified by comparing metal 
requirements to current production rates and resource estima-
tes. Their model suggests that vanadium which is commonly 
used in nuclear, photovoltaic, carbon capture and storage, elec-
tric vehicles (plug-in hybrid) and fuel cell vehicles, is “critical” 
in all three energy policy scenarios, whereas selenium, indium, 
and tellurium are “critical” in photovoltaic systems, dyspro-
sium in wind power, and nickel, platinum zirconium, yttrium, 
lithium, and lanthanum in fuel cell vehicles.

Deetman et al. (2018) take a broader approach in their re-
search. They focus on developing climate policy scenarios for 
five metals like copper, tantalum, neodymium, cobalt, and li-
thium, used in three kind of applications: appliances, cars, and 
electricity technologies in 2050. The results show, unsurpri-
singly, that the demand for materials introduced by these pro-
ducts will increase significantly, regardless of anticipated cli-
mate policy ambitions. Similarly, the dominant factors for the 
demand are not climate policies but rather socioeconomic de-
velopments and technological change. Cars would be the ma-
jor driver for the growth of metal demand, especially lithium 
and cobalt, which would be a consequence of the transforma-
tion of the traditional internal combustion engine car fleet into 
a hybrid/electric one.

Grandell et al. (2016) perform an analysis of the future 
availability of some critical minerals used in the clean energy 
technologies. These authors modeled the demand for 14 criti-
cal minerals (Ag, Nd, Pr, Dy, Tb, Yt, La, Ce, Eu, Co, Pt, Ru, In, 
Te) present in green energy technologies from 2010 up until 
2050, including solar energy, wind energy, electric mobility, 
fuel cells, batteries, electrolysis and efficient lighting. The de-
mand resulting from the expansion of the RET was compared 
against the known present state of global reserves and resour-
ces, and according to their results, the most serious problem 
could be the future availability of silver in the solar energy sec-
tor. Silver demand in 2050 will exceed known global resour-
ces by more than 300% and present reserves by almost 450%. 
Other possible material restriction might be given for indium, 
tellurium or ruthenium.
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In a country-specific approach, Viebahn et al. (2015) assess 
whether the transformation of the German energy system by 
2050, which will consist of a large deployment of renewable 
energy and GHGs emissions reduced between 80-90% mat-
ched against 1990 levels, would be affected by a lack of critical 
minerals. The main conclusion in their study shows that the 
deployment of most of the renewable energy would not be li-
mited by the geological availability of minerals. However, pos-
sible criticality issues could arise for specific sub-technologies 
of wind power, photovoltaic, and battery storage. In the wind 
power technology, the main constraint is the development of 
technologies that involve the use of REEs. In the case of pho-
tovoltaic, the demand for selenium and indium in CIGS cells 
(Cu-In-Ga-diselenide) does not appear to be secured in the 
long term. Nonetheless, these restrictions could be overcome 
by establishing recycling systems.

Brumme’s (2011) thesis reviews thoroughly the REEs used 
to produce wind turbines. She analyzed the REEs market and 
the requirements for the deployment of the wind power ge-
neration based on the projections of the International Ener-
gy Agency (IEA) Blue Map scenario for 2050. According to 
Brumme’s results, the REE demand for wind turbines would 
rise between 66 to 500% -low and high scenarios, respectively- 
in 2050 compared to 2010 levels. Brumme ends by stating that 
the current level of supply is highly unlikely to be sufficient in 
the long run, and this could hamper a climate change mitiga-
tion measure, such as wind power generation. 

3.  coloMbIan energy sector

Thanks to its geographic location, historically the bulk of elec-
tricity generation has depended on hydropower. However, in 
recent decades there has been an increase in the production 
of electricity in thermal plants which could support the main 
system in cases of severe weather events, such as prolonged 
droughts. As a result, the production share of non-conventio-
nal renewable energy sources, (e.g. wind and solar power), has 
remained at negligible levels, far below other South American 
countries that have expanded renewable electricity generation, 
such as Chile and Brazil (Radomes and Arango, 2015).

The aim of this chapter is to provide an overview of the 
Colombian electric system, which will be covered in two parts. 
First, the generation system will be discussed and how it has 
changed over time, which will be followed by an overview of 

the historical energy demand and its implication for future de-
mand.

3.1. Electricity generation
Colombia is located in the north-western corner of South 
America, bordered by Brazil and Venezuela to the east, Ecua-
dor and Peru to the south, by the Pacific Ocean to the west 
and the Atlantic Ocean to the north. The country has three 
mountain ranges which are sub-ranges of the Andes, and it has 
plenty of non-renewable resources like coal, nickel, and gold as 
well as abundant hydrologic resources represented in five great 
basins from the rivers: Magdalena, Cauca, Putumayo, Guavia-
re, and Amazon, among many others. 

This plentiful of water resources are reflected in electricity 
generation mix. In 2017, total installed capacity was 17.3 GW, 
of which hydropower made up for 64.5%, while the thermal 
power (which includes gas turbines, oil and coal plants) ac-
counted for 30.4%, small hydropower plants 5% and finally, 
wind power with 0.1%.

Historically, hydropower has been the traditional source 
of energy production, but since the early 1990s the thermal 
production has been increasing its share of electricity gene-
ration. Microclimatic phenomena such as “El Niño-Southern 
Oscillation” had severely affected the output of large hydro 
plants because of prolonged droughts (especially severe was 
the 1992 drought, see Figure 4). To overcome this vulnerability 
the government started to approach other sources of electricity 
as well as to give incentives to the private industry for the in-
vestment in thermal plants that could back up the system once 
climatic phenomena would affect hydropower production 
(Arango and Larsen, 2010).

The CO2 emissions to the atmosphere in the energy pro-
duction sector in Colombia have been relatively low due main-
ly to its hydropower dominance. However, given the increasing 
uncertainty of the effects of climate change on hydrologic re-
sources and the increasing reluctance of communities to the 
installation of new hydroelectric projects given their environ-
mental impact, the share of the thermal energy production will 
likely continue to grow and so will the share of CO2 emissions 
into the atmosphere.

Regarding the non-conventional renewable energy pro-
duction like wind and solar photovoltaic, in Colombia there 
is only one wind power plant with an installed capacity of 19.5 
MW which accounts for the 0.11% of the 17.3 GW of the to-
tal capacity. Nevertheless, the potential for the installation of 
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new renewable energy capacity is good; the northern part of 
the country has been classified as having class 7 winds (over 10 
m/s) and a total wind power potential of 25 GW, which is more 
than enough to meet the entire country demand (Gómez and 
Ribo, 2018). The solar photovoltaic installed capacity in 2010 
was around 9 MW. However, by being located near the Equa-
tor, Colombia receives constant solar radiation (average 4.5 
KWh/m2/day), which gives it relevant potential for this kind of 
energy source (Gómez and Ribo, 2018).

In October 2019, the Colombian government held the first 
of several renewable energy contract auctions, paving the way 
for the “Energy Transition” (Ministerio de Energía de Colom-
bia, 2020). This plan aims to increase installed capacity from 
50 MW to over 2500 MW in wind and solar energy with 14 
projects (9 of them wind in La Guajira, and 5 solar in the de-
partments of Cesar, Cordoba, Valle del Cauca and Tolima), 
which would represent 12% of the total energy mix by 2022.

3.2. Energy Demand
Colombia is the fourth largest economy in Latin America and 
the Caribbean, behind Brazil, Mexico, and Argentina. Since the 
early 1990s its gross domestic product (GDP) has been increa-
sing considerably and consequently the energy requirements 
to sustain this growth. The energy demand during the period 
between 1990 and 2013 has nearly doubled, increasing from 
28.85 to 55.73 TWh per year (Edsand, 2017). The most used 
energy sources are diesel and gasoline, both associated with the 
transportation sector, followed by natural gas used mainly in 
the industry sector. The housing sector uses most of the elec-
tricity generated, meanwhile the tertiary and industrial sectors 
use almost the same amount of electricity (Nieves et al., 2019).

According to the Mining and Energy Planning Unit of Co-
lombia (UPME) in 2030, the demand for energy will increase 
to 105 000 GWh (UPME, 2016). However, Nieves et al. (2019) 
foresee that in 2030 the demand for electricity will fluctuate 
between 74 000 and 125 000 GWh; whereas in 2050, the elec-
tric energy demand could reach up to a maximum of 383 000 
GWh.

4.  Method and data

This chapter’s aim is to outline the method employed to obtain 
the results as well as to discuss the data sources, which will be 
applied to estimate the derived demand of REEs embedded in 
RETs in Colombia during the period 2020-2050 (Figure 5). 

The first part will briefly explain what scenario analysis is 
and the parameters used in this type of analysis. Next, it dis-
cusses the research of Calderón et al. (2016) and van der Zwaan 
et al. (2016). In their research they propose a pathway for the 
deployment of RETs through scenario analysis, the result of 
which –in this specific case, electricity capacity additions 

Figure 4.  Colombian generation electricity power from 1971 to 2015
 Source: Churio-Silvera et al. (2018).

Figure 5.  Diagram explaining the method used in this study
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(GW) by type of energy source during the 2015-2050 period– 
will serve as the main input for the development of this study. 
Finally, it will establish the metal intensity of use of the REE 
incorporated in RETs, also taking into account possible future 
material improvements of these technologies. The cumulative 
demand is then calculated by multiplying the additional capa-
city (in GW) with the intensity of use of the REE embedded in 
the wind energy technologies.

4.1. Scenario Analysis
Scenario analysis is a method developed to explore future alter-
natives; it is an important tool for dealing with the complexity 
and uncertainty of the future. As Martinot et al. (2007) state:

They could be seen as ‘if… then’ queries: if policies accelerate 
the growth of renewables, what is the difference between situa-
tions with and without policies? If CO2 emissions should be sta-
bilized, what combinations of renewables and other technologies 
will achieve stabilization?

They can assist policy makers in decision-making strate-
gies when it comes to long-term planning and are used espe-
cially in highly complex climate policy issues. However, em-
phasis should be given to the notion that scenarios are not 
predictions, but rather imaginative explanations of how pos-
sible futures might unfold (Kishita et al., 2017), and they do 
so by establishing a given set of assumptions and constraints.

There are three major categories of considerations when 
building a scenario analysis (TCFD, 2017). These will affect 
how the scenarios might unfold:

 » Parameters used: Discount rate, GDP and other macroeco-
nomic and demographic variables.

 » Assumptions made: Assumptions related to policy changes, 
technology development/deployment, energy mix, price of 
key commodities or inputs, and timing of potential im-
pacts, among others.

 » Analytical choices: choice of scenarios, time horizons, su-
pporting data and models.

4.2. Colombian scenario description
This study is based on the outcomes of several previous studies 
(e.g. Calderón et al., 2016; van der Zwaan et al., 2016). which 
were designed to explore the implications of alternative CO2 

emission scenarios for Colombia and Latin America’s economy 
and energy system Their research was done under the CLIMA-
CAP-LAMP project, -which stands for Integrated Climate Mo-
delling and Capacity Building in Latin America- and assess the 
implementation of carbon taxes and abatement targets in redu-
cing the emission of greenhouse gases (GHG) in key countries 
of the region (Science for Global Insight, 2015).

In this project, Colombia is assessed as a separate country 
rather than part of an aggregate region, such as Latin America. 
This allows to evaluate the implications of climate policy sce-
narios specifically, and thus the outcomes of their investigation 
form the basis of this study.

Four models were used to build the scenarios: two partial 
equilibrium models – The Global Change Assessment Model 
(GCAM), and the TIMES Integrated Assessment Model of the 
Energy Research Center of the Netherlands (TIAM-ECN)- and 
two Computable General Equilibrium models (CGE) – the 
Phoenix Model and Modelo de Equilibrio General para Co-
lombia (MEG4C) (Calderón et al., 2016).

Of these four, this study uses the results of the TIAM-ECN 
model, which is a model for assessing long term energy systems 
and climate policy analysis (Table 4). It is based on energy cost 
minimization with a foresight until 2100 (Kober et al., 2014). 
The development of the global energy economy over time is 
simulated from the resource extraction to the final energy use. 
This model allows to establish future energy supply pathways 
including the set of possible fossil, nuclear and renewable ener-
gy technologies in Colombia (Calderón et al., 2016).

Once the model is established, the next step is the choice of 
the suitable scenarios. Calderón et al. (2016) chose four scena-
rios to assess how CO2 emissions would deviate from baseline 
levels through the implementation of carbon taxes and abate-
ment targets over the period 2020-2050 (Table 5).

By comparing different climate-policy scenarios with a bu-
siness as usual scenario, the policy-makers are able to assess 
how the variables analyzed - in this case, CO2 emissions - may 
deviate from the baseline level in the period of time established 
(Calderón et al., 2016). Specifically, the different pathways of 
how the energy mix will develop once adopted different clima-
te mitigation policies is of particular importance for the outco-
me of this study.

The results obtained in their study were subsequently 
downloaded from the CLIMACAP website (International Ins-
titute for Applied Systems Analysis (IIASA) 2015), then filte-
red by country, model, scenarios; lastly, the capacity (in GW) 
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variable was selected as the main input for the purposes of this 
study. The 2010-2050 period of their study is also in accordan-
ce with the scope of this study.

Figure 6 shows what will be the installed capacity by type 
of energy source for the different scenarios in Colombia for 

the 2020-2050 time interval according to the results of the 
CLIMACAP project. In the core baseline scenario, wind and 
solar energy capacity does not show a significant increase in 
the total capacity. Therefore, in this scenario, Colombia will 
continue to rely mainly on hydropower and fossil fuel-based 
technologies for electricity generation; whereas, in the most 
ambitious scenarios (50% abatement GHG and FF&I and the 
High CO2 price), the renewable energy penetration rate could 
reach up to 60% of the total energy mix in 2050. In all of these 
scenarios, the wind power is the dominant renewable energy 
source. 

4.3. Global metal intensities of use and market shares 
of the wind energy technologies

Once established the input data, the next step is to assign the 
metal intensity of use of the REEs embedded in the wind ener-
gy technologies. This will be based on the current published 
literature, taking into account possible future technical impro-
vements, as well as recycling rates.

Regarding recycling, table 6 displays current and future re-
cycling rates of selected REEs used in this study according to 
literature. Presently, recycling of rare earth elements is nearly 
absent, but will steadily increase mainly by concerns about fu-
ture scarcity and rising prices of metals (Grandell et al., 2016).

Table 7 summarizes the metal intensity of use (IU) of the 
REEs present on the wind technologies used in this study, as 
well as a future projection of this parameter for the years 2025 
and 2050. For this study, the average lifetime of the wind tech-
nologies is set to 25 years.

Table 4.  Main features of and structural characteristics of the TIAM model
Model/Feature TIAM-ECN

Economic coverage Partial equilibrium

Calibrated years 2005, 2010

Endogenous variables Energy supply, trade, emissions, prices (marginal costs)

Exogenous variables End-use-demand (population, GDP), technology parameters, 
(investment costs, etc.)

Emission data sources EDGAR, IEA

Population data sources UN

GDP data sources WB

Energy data sources IEA

Covered sectors Energy, Land use

Region Global, Argentina, Brazil, Chile, Colombia, Mexico, Venezuela.

Covered gases CO2, CH4, N2O

 EDGAR Emission Database for Global Atmospheric Research; IEA Interna-
tional Energy Agency; UN United Nations; WB World Bank; PV Photovoltaic; 
CSP Concentrated Solar Power. Source: Modified from Calderón et al. (2016) 
and van der Zwaan et al. (2016).

Table 5.  Baseline and climate-policy scenarios explanation
Scenario Scenario description

Core baseline Business-as-usual scenario including climate and energy 
policies enacted prior to 2010.

High co2 price A carbon tax of 50 $/tCO2e is levied in 2020 growing each 
year at 4% to reach 165 $/tCO2e* in 2050.

50% abatement (GHG)
Greenhouse emissions, excluding Land Use Change CO2, 

are reduced by 12.5% from 2010 levels by 2020, linearly 
increasing to 50% of 2010 levels by 2050.

50% abatement (FF&I)
Fossil fuels and industrial CO2 emissions are reduced by 

12.5% from 2010 levels by 2050, linearly increasing to 50% 
of 2010 levels by 2050.

 *US dollars/ton of CO2 emitted. Source: Calderón et al. (2016).

Figure 6.  Development of electricity capacity from 2020 to 2050 in four climate policy scenarios, according to the outcomes of CLIMACAP project research (In-
ternational Institute for Applied Systems Analysis (IIASA), 2015).
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In addition, there are other factors when considering fu-
ture deployment of the wind technology which are related to 
how the different sub-technologies will evolve over time. Table 
8 shows the forecast of how wind energy will be shared be-
tween onshore and offshore technologies on a global basis/sca-
le (DNV GL, 2017). Table 9 shows the market share evolution 
of the different subtypes of wind turbines from 2020 to 2050 
for both onshore and offshore locations. The latter values were 
taken from the study of Viebahn et al. (2015), since there are 
no studies for Colombia regarding that matter.

5.  derIved Metal deMand and MaterIal avaIlabIlIty

This chapter aims to assess the demand for metals in a quanti-
tative manner. The first step to calculate the metal requirement 
in the specified period is to divide the ten-year capacity addi-
tions into specific renewable energy technologies, as described 
in the previous chapter, by sub-type, location and market share. 
Then, for each scenario, the added capacity of a certain type of 
technology (e.g. DD-PM onshore wind turbines) is multiplied 
by its specific metal consumption in a given period.

Finally, the cumulated demand for the different elements 
is considered in relation not only to their current annual glo-
bal extraction rate but also to estimates of world reserves. The 
reserves are defined by the (USGS, 1996-2020) as “that part of 
reserve base which could be economically extracted or produ-
ced at the time of the determination”, thus allowing to make 
a fair comparison with the amount of metals that can be mi-
ned at current market prices. Reserves are a dynamic measure, 
they can change due to alterations such as political and social 
factors, change in demand and price, as well as technological 
development (Davidsson and Höök, 2017).

5.1. Cumulative demand for REEs in the wind energy 
technologies

Figure 7 shows the cumulated demand for neodymium and 
dysprosium in the deployment of onshore wind technology in 
Colombia for the 2020-2050 period. The 50% abatement GHG 
scenario is the highest regarding REE demand, with a cumula-
ted total demand of 6,150 tons of Nd and 498 tons of Dy. It is 
closely followed by the 50% FF&I scenario with 5,581 tons and 
456 tons for Nd and Dy, respectively. This indicates that to hal-
ve emissions by 2050, the energy system will depend heavily on 
renewable energy technologies for electricity generation, and 
consequently, this will increase the amount of metals needed 
for such deployment.

In contrast, in the business-as-usual scenario (core baseli-
ne) the amount of metal needed is almost negligible because, as 
explained above, the energy mix in this scenario will rely most-
ly of hydropower, gas and coal for electricity generation. Inte-
restingly, in the High CO2 price scenario, which is a scenario 
where a growing tax on CO2 emissions is levied, only moderate 
values of Nd and Dy 2050 demand are shown, with 2,135 tons 
and 181 tons respectively.

In offshore wind technology deployment, trends are simi-
lar but with lower general metal requirements (Figure 8). In 

Table 6.  Current and future end of life recycling rates (EOL RR) for selected 
REEs

Nd Dy

Current EOL RR <1% <1%

2050 EOL RR 45% 45%

 Future values were taken from Grandell et al. (2016) and Viebahn et al. (2015).

Table 7.  Current and future metal intensities of use of wind technologies ac-
cording to different authors

Sub-type Element This study* 2025** 2050**

Direct Drive
(DD-PM)

Dysprosium 18 11.7 11.7

Neodymium 199 162.5 130

Middle speed (MS)
Dysprosium 3.7 2.9 2.9

Neodymium 49.6 40 32

High speed (HS)
Dysprosium 1.8 1.4 1.4

Neodymium 24.8 20 16

 All values are in t/GW; * Average values from Tokimatsu et al. (2018), Manber-
ger and Stenqvist (2018), van Gosen et al. (2014), Viebahn et al. (2015), Habib 
and Wenzel, (2014), and Brumme (2011); ** Forecast of future IU according 
to Viebahn et al. (2015).

Table 8.  Projection of the world share of wind energy according to its location
Location 2020 2030 2040 2050

Onshore 78.6% 66.7% 68.2% 76.9%

Offshore 21.4% 33.3% 31.8% 23.1%

 Source: DNV GL (2017).

Table 9.  Distribution of the wind energy according to type of location and 
windmill technology

Location subtype 2020 2030 2040 2050

Onshore

AG* 10.0% 6.6% 2.7% 1.5%

SG* 30.0% 15.6% 8.3% 3.8%

HS 50.0% 51.1% 43.3% 42.2%

MS 0.0% 4.7% 4.6% 12.5%

DD-PM 10.0% 22.0% 41.1% 40.0%

Offshore

AG* 61.0% 31.5% 11.5% 2.0%

SG* 0.0% 0.0% 0.0% 0.0%

HS 0.7% 0.5% 0.3% 0.0%

MS 38.3% 49.5% 59.2% 60.0%

DD-PM 0.0% 18.5% 29.0% 38.0%

 * These types of wind turbines do not use REEs. Modified from Viebahn et 
al. (2015).
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the 50% abatement GHG scenario, cumulated metal demand 
for Nd and Dy in 2050 is 2,609 tons and 192 tons, respectively, 
followed closely by the 50% abatement FF&I scenario with 
2,403 tons and 177 tons of Nd and Dy.

The cumulated demand for Nd and Dy in the busi-
ness-as-usual scenario is, as in the case of the onshore tech-
nology, negligible, with Nd and Dy values of metal demand in 
2050 of just 1.33 tons and 0.10 tons, respectively. Figure 9 shows the results of the estimated annual mineral 

demand in the year 2050 in relation with the actual annual pro-
duction rates for the selected REEs analyzed. Nd and Dy embed-
ded in wind technologies are the elements with the highest values 
in both of the abatement scenarios with ratios varying between 
15% for Dy and 37% for Nd. Although in the High CO2 price the 
percentage of Dy and Nd drops to 8% and 20% respectively. In 
the business-as-usual scenario the values are insignificant.

Figure 10 displays the ratio between cumulated metal de-
mand for Nd and Dy and current reserves for those metals. 
Dysprosium shows values around 0.14% for both 50% abate-
ment scenarios, whereas for the High CO2 price is 0.05%. The 
values for the business-as-usual scenario are negligible. For 
neodymium the highest values are around 0.11% for both the 
50% abatement scenarios, 0.04% for the High CO2 price and 
0% for the business-as-usual. 

Figure 7.  Cumulative metal demand for Nd and Dy in the onshore wind power 
in Colombia during the 2020-2050 period

5.2. Cumulative demand from a resource perspective
In this section the material requirement of REEs is compared 
to their annual global extraction rate as well as to the global 
reserves (Table 10). The comparison with the former provides 
insight as to what percentage of the current production would 
have to be employed to meet future rare earth demand from 
the wind industries. In contrast, the reserves will allow to es-
tablish comparison points with the geological availability of 
metals by considering current market prices.

Table 10.  Production rates and reserves (in metric tons of rare-earth oxide 
(REO) equivalent content) for selected REEs 

Element Production rates (2016) in tons Reserves (2016) in tons

Dy 16001 480 0001

Nd 70002 800 0001

 1) Grandell et al. (2016); 2) Arrobas et al. (2017).

Figure 9.  Ratio of the 2050 metal demand and 2016 production levels for se-
lected REEs embedded in renewable energy technologies

6.  dIscussIon

This chapter discusses the main findings of the previous chapter, 
the assumptions made, the scope and limitations, concluding 
with some recommendations regarding the future availability of 
critical minerals for the deployment of RETs, not only in Co-
lombia, but also taking into consideration a global perspective. 

Figure 8.  Cumulative metal demand for Nd and Dy in the offshore wind power 
in Colombia during the 2020-2050 period
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6.1. Future REEs availability
The future availability of critical metals, such as the REEs, can 
be estimated by combining the technology and resource de-
velopment over long-term scenarios. This allows to assess the 
energy system transformation of a country, a region or even 
the whole world.

Assessments, such as the one presented, are only possible 
when certain assumptions are made. Assumptions like the te-
chnological pathway for the next 30 years or so in Colombia, 
including the market share of the sub-technologies (e.g. onsho-
re vs. offshore), future improvements in the material intensity 
of use and end-of-life (EOL) recycling rates, can greatly affect 
the outcome of the cumulative demand of the selected REEs. 
Nonetheless, it is starting point for the development of more 
detailed methodological frameworks dealing with criticality 
assessments in developing countries such as Colombia.

Future assessments of the Colombian energy transforma-
tion could include a broader range of critical minerals, other 
than the REEs, such as copper, indium, tellurium, and could 
also take into consideration the deployment of other clean te-
chnologies (e.g. solar technologies, battery storage, and electric 
mobility, among others).

According to the results of this study, Dy and Nd are con-
sidered here as “critical” elements for the deployment of the 
renewable energy technologies in Colombia during the 2020-
2050 period, with a total cumulated demand of 690 t and 8,758 
t respectively, included in the wind energy technologies.

When the cumulated demand in Colombia for both wind 
energy technologies, in 2050, for Nd (8759 t) and Dy (648t) 
is compared to the global reserves (800 000 t and 480 000 t, 
respectively; see Table 10), it can be seen that the cumulated 
demand for Nd and Dy constitutes less than about 1.1% and 

0.15% of the global reserve values. Therefore, from a reserve 
point of view, the geological availability of the REEs will not 
constrain growth rates and total penetration levels of wind 
power deployment in Colombia during the 2020-2050 period. 
Furthermore, given the fact that reserves include economic, 
social, environmental, and geological variables that can change 
over time, these will likely increase in the future through the 
discovery and commissioning of mines as demand rises.

Now, when it comes to current production rates, things are 
somehow different. The estimated Colombian annual mineral 
demand for Dy and Nd in the year 2050 would constitute 13% 
and 37% of the world’s current annual production rate, respec-
tively. This will become an issue that needs careful considera-
tion given the fact that by 2050 a massive deployment of the 
wind power for the global electricity generation is expected. 
Possible bottlenecks might arise and could influence the tech-
nology mix and maximum growth rates of some sub-techno-
logies, such as the permanent magnet direct drive (PMDD).

Further sources of concern regarding mining production 
rates are competing demand from other technologies and recy-
cling limitations. For the former, the increasing consumption 
of permanent magnets which utilizes Nd-Dy in other applica-
tions such as electric mobility will put more stress on the alre-
ady strained production rates. 

The supply of REEs come from two sources: either primary 
production, i.e. mining, or from secondary sources such as re-
cycling. However, the secondary resources obtained through 
recycling are limited by several factors. Firstly, the limited EOL 
recycling rates – current levels are usually < 1% but will growth 
steadily to almost 45% by the end of the study period -; and 
secondly, the expected service life of RETs, which is 25 years, 
implies that only a small amount of the materials used in the 
period of the study will be available for recycling. In addition, 
even when EOL recycling rates improve, the recovery of the 
materials is not guaranteed, since many turbines that have rea-
ched the EOL have not been properly dismantled and recycled 
(Davidsson and Höök, 2017).

Furthermore, expanding mining capacity is not an easy task 
either. There are certain aspects of the REEs mining that makes 
it a complicated enterprise to achieve, including: 1) long lead 
times that take for a mineral deposit to become a producing 
mine, which oscillate between 10-20 years; 2) uncertainty of 
the return on investment caused by inherent mining factors; 3) 
environmental and social impacts that could delay the expan-
sion of mines; and 4) the fact that these minerals are produced 

Figure 10.  Ratio of cumulated metal demand and 2016 reserves for Dy and Nd 
embedded in renewable energy technologies
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as by-products, which means that as even their prices increase, 
the production does not necessarily increase immediately, sin-
ce this normally implies a larger output of the material which 
is primarily mined (Davidsson and Höök, 2017).

All of these issues may cause supply-demand imbalances 
and consequently, price hikes could occur, especially if govern-
ments were to implement climate policy scenarios such as the 
50% abatement GHG, where the renewable energy technolo-
gies play an important role in electricity generation. 

6.2. Worldwide perspective
To put these results into perspective, they will be compared 
against the outcomes of other national and global studies. Vie-
bahn et al. (2015) and Brumme (2011) performed assessments 
of the mineral demand for RETs in Germany during the 2010-
2050 period and found that the supply of Dy and Nd (among 
other critical minerals) will be a source of concern, inasmuch 
as present levels of REEs supply will presumably not be able to 
satisfy a rising demand in the future.

The same trend is also observed on a global scale. Figure 
11 shows the cumulative demand of several elements used in 
different clean energy applications. Here, Dy and Nd demand 
shows significant increments for each decade to keep up the 

pace of the world deployment of renewable energy technolo-
gies, well above current mining production levels.

As it can be seen, the world could face potential shortages 
of metals such as Dy and Nd, and that could in turn, hinder the 
deployment of RETs and consequently, the fight against clima-
te change.

6.3. Policy implications
Supply and demand policies can be used to mitigate the issues 
that the world could face related to the massive deployment 
of the renewable energy technologies and the mineral demand 
that a low-carbon economy could create. In this section, three 
policy options related with the mitigation of criticality issues 
are discussed. 

6.3.1. Substitution
Material substitution is a way to decrease the amount of mi-
nerals utilized in RETs. It is an efficient measure to deal with 
criticality issues as long as the replacement is a more abundant 
material. However, this method has also certain drawbacks, 
such as the drop in performance of the technology when su-
boptimal materials are used. Moreover, it could also shift the 
criticality burden from one mineral to another, which could 

Figure 11.  Metal demand for wind and photovoltaic power generation between the 2020-2050 period, compared against metal production (2017 = 1)
 Source: Taken from van Exter et al. (2018).
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worsen the issue. Many materials could become scarce at the 
same time if the global demand is high; this is likewise expec-
ted in the transition to a low carbon economy (van Exter et al., 
2018).

6.3.2. Improve circular design and recycling efforts
In this group of policies there are two main considerations that 
could help reach a sustainable future in the renewable energy 
technologies:

1. Design products with longer lifespans 
2. Improved modular design which facilitates the separation 

of components

For wind power, increasing the lifespan of turbines seems 
more relevant, given the fact that minimal material additions 
would be needed for producing electricity. For photovoltaic 
power, however, improvements in modular design seems more 
relevant. In addition, current recycling allows for most of the 
materials to be barely recycled. Therefore, areas for improving 
include the energy consumption associated with the recovery 
and increasing the purity of recovered materials (van Exter et 
al., 2018).

6.3.3. Sound technological choices
Policy-makers can influence the choice of technology a coun-
try or region could adopt when bottlenecks such as the mining 
capacity of critical elements are expected. The level of aware-
ness among policy-makers has heightened, given that the in-
creased use for critical materials such as Nd-Dy embedded in 
the renewable energy technologies may bring important issues 
for the development of a low carbon global economy.

6.3.4 World’s dependency on China
The dependency on China’s exports of REEs is being tackled 
on different fronts. In the United States, President Trump´s 
Executive Order 13953, which addresses “the threat to the do-
mestic supply chain from reliance on critical minerals from 
foreign adversaries and supporting the domestic mining and 
processing industries”, was signed on 09/30/2020 and publi-
shed on 10/05/2020 (see: Federal Register, Vol. 85, No. 193, 
Monday, October 5, 2020). 

The decision of the Australian Government to strengthen 
its position in the world market of critical minerals, particularly 
REEs, with several projects currently at the feasibility stage that 

include Nd and Pr (see: https://austrade.gov.au/ArticleDocu-
ments/5572/Australian_Critical_Minerals_Prospectus.pdf. And 
also: https://www.industry.gov.au/sites/default/files/2019-10/out-
look-for-select-critical-minerals-in-australia-2019-report.pdf).

Finally, the European Commission created ERECON (Eu-
ropean Rare Earths Competency Network) as an initiative to 
strengthen the European Rare Earths supply chain. This ne-
twork focuses on opportunities and road-blocks for primary 
supply of rare earths in Europe, European rare earths resour-
ce efficiency and recycling, and European end-user industries 
and rare earths supply trends and challenges. As stated by 
ERECON “rather than focusing on admonishing China over 
its REE policy, European industry and policy-makers must 
consider what they are prepared to do to support the develop-
ment of a more diversified and sustainable supply chain” (Eu-
ropean Commission, 2015; see also ERECON, 2015).

7.  conclusIons

Overall, from a reserve perspective, the deployment of renewa-
ble energy technologies in Colombia during the 2020-2050 pe-
riod and the associated mineral demand will not be affected 
by the worldwide geological availability of rare earth elements 
such as dysprosium and neodymium. Instead, certain sub-te-
chnologies, such as the permanent magnet direct drive in the 
wind power generation, could experience some future supply 
availability problems related to deficient mining capacity.

Demand from other industries such as electric mobility 
will also increase, and thus already troubled mining produc-
tion rates will experience even more pressure. Consequently, 
the energy transition to a low-carbon economy and the fight 
against climate change could become a vulnerable process.

The supply of these minerals will come mainly from pri-
mary resources, as the supply from secondary sources will not 
be available in large quantities within the time frame of this 
analysis. In the extraction and refining processes, REEs only 
occur as byproducts, which means that these minerals are sub-
ject to supply restrictions related to the primary mineral with 
which they are associated. Therefore, even when prices increa-
se, supply will not immediately increase, making it difficult to 
predict future availability. Recycling could become a signifi-
cant mitigation measure, but only after 2050.

Policies that promote improved circular design, recycling, 
substitution, and sound technological choices are vital measu-
res for achieving a more sustainable and resource-efficient fu-
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ture. At the same time, these support strategies will help avoid 
potential shortcomings in the availability of critical minerals, 
such as the supply of rare earth elements, on a global scale.

Upcoming assessments of the Colombian energy system 
could use a broader range of critical minerals and include 
other clean energy technologies. There is also the need to im-
prove the knowledge of the REEs in Colombia, which ensures 
the dissemination of accurate information to develop geologi-
cal and mining projects, and consequently, help mitigate future 
supply constraints.
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