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EDITORIAL

oletin Geolégico number 46 (2020) has published three articles in the disciplines of econo-
mic geology, hydrocarbon genesis, and basin evolution in several zones of Colombia. The
following passages have been taken from these articles and introduce their contents.

The Servicio Geolégico Colombiano (SGC) has carried out a large geophysical exploration
campaign to acquire data and make it available to the academic community and mining industry.
The SGC overflew the Andean and eastern parts of Colombia and obtained more than 700,000 km
of high resolution airborne geophysical data (magnetometry and gamma spectrometry). Moyano
et al. present an interpretation of isolated magnetic anomalies located in three different geologic
environments in Colombia: the San Lucas range, the Andes Cordillera, and the Amazonian craton
(Figure 1).
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Figure 1. Location of the areas with geological contributions presented in this issue
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Rossello and Saavedra present a discussion about the structural aspects that contribute to the
creation of the genetic and morphological characteristics of the bedding surfaces underlying the
petrophysical potential of the Matachines field located in the Girardot subbasin, within the Upper
Magdalena Valley basin (VSM, Valle Superior del Magdalena), Colombia (Figure 1). The authors
focus on sectors where the primary permeability and porosity values are usually too low to meet
economic expectations for hydrocarbon exploration or production activities.

Rodriguez and Obando report new petrography, total rock chemistry and U-Pb zircon geo-
chronology data for the La Quinta Formation, Serrania de Perija, in the northern Andes of Colom-
bia (Figure 1). This new information is correlated with other volcano-sedimentary sequences, spe-
cifies the distribution of arc volcanism and the analysis of inherited zircons in the volcanic rocks to
improve the understanding of the basement distribution on which the arc is founded.

The editor acknowledges the efforts of the following reviewers whose comments and recom-
mendations, on the eleven manuscripts submitted contributed to the improvement of the three ar-
ticles that were ultimately approved: Ana Ibis Despaigne, Andrés Cardenas, Ariel Cadena, Barbara
Martiny, Camilo Bustamante, César Mora, German Bayona, Gustavo Cérdoba, Hermann Bermu-
dez, Hugo Murcia, Jhon Jairo Sanchez, José Luis Arce, Juan Carlos Molano, Juan Diego Colegial,
Luis Castillo, Luis Enrique Cruz, Mario Moreno, Mauricio Bermudez, Umberto Cordani, Natalia
Pardo, Oswaldo Ordéiiez, Thomas Cramer, and Yamirka Rojas. We recognize that the final content
of the articles does not necessarily reflect the thoughts of the reviewers and editors.

Mario Maya
Editor

Boletin Geoloégico
mmaya@sgc.gov.co

boletingeologico@sgc.gov.co
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ABSTRACT

This paper focuses on presentation of the methodology used by geophysicists at the Servicio Geoldgico Colombiano
(SGC) for the processing, anomaly selection and interpretation of airborne magnetometry and gamma spectrometry data.
Three (3) selected magnetic anomalies from different geological settings (Andes Cordillera, San Lucas Range and Ama-
zon region) are presented as examples. 3D magnetic vector inversion (MVI) modeling of each of the selected magnetic
anomalies shows magnetic sources less than 100 m deep or exposed with sizes from 2.5 to 6 km. The magnetic data inter-
pretation also allows the identification of linear features that could represent structural control for fluid migration and/
or ore emplacement. Additionally, the integration of the geophysical data with other geoscientific information (geologic,
metallogenic and geochemical data) leads to the proposition of an exploration model for each anomaly: intrusion-related/
VMS deposits for the Andes, porphyry/intrusion-related/epithermal deposits for San Lucas and carbonatite/kimberlite for
Amazonas. The methodology used and examples presented illustrate the potential of SGC airborne geophysical data for
mineral resource evaluation and as input for the design of fieldwork for geological, geophysical, geochemical and metallo-
genic characterization of an area of interest.

Key words: Geophysical data processing, 3D modeling, magnetic anomalies, mineral resources.
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RESUMEN

Este documento se centra en la presentacion de la metodologia usada por los geofisicos del Servi-
cio Geologico Colombiano (SGC) para el procesamiento, selecciéon de anomalias e interpretacion
de datos de aeromagnetometria y gamma-espectrometria. Se presentan como ejemplo tres anoma-
lias localizadas en diferentes ambientes geologicos (cordillera de los Andes, serrania de San Lucas
y Amazonia). La modelacién 3D a partir de la inversion del vector magnético (MVI) de cada una
de las anomalias seleccionadas muestra fuentes magnéticas a menos de 100 m de profundidad, o
aflorantes, y con tamanos de 2.5 a 6 km. La interpretacion de los datos magnetométricos también
permiti6 identificar rasgos lineales que pueden representar controles estructurales para el ascenso
o emplazamiento de mineralizaciones. Adicionalmente, la integracion de los datos geofisicos con
otra informacion geocientifica (geologia, metalogenia y datos geoquimicos) permitié proponer
posibles modelos de exploracion de cada anomalia: depdsitos asociados a intrusivos/sulfuros ma-
sivos vulcanogénicos (VMS), en el caso de la anomalia de los Andes, pérfido/asociado a intrusivo/
epitermal para la de San Lucas, y carbonatita/kimberlita para la del Amazonas. La metodologia em-
pleada y los ejemplos presentados ilustran el potencial de los datos geofisicos del SGC para evaluar
el potencial de recursos minerales y como un insumo para la definicion del trabajo de campo en-
focado en la caracterizacion geoldgica, geofisica, geoquimica y metalogénica de un area de interés.

Palabras clave: Procesamiento de datos geofisicos, modelado 3D, anomalias magnéticas, recursos minerales.

1. INTRODUCTION

Airborne geophysics is the easiest and most economical
way to improve geological knowledge of large areas and
to detect direct anomalies for further interpretation and
subsequent drilling. The presence of an isolated magne-
tic anomaly attracts the attention of a mineral explorer.
Once found, the next step is to estimate the physical and
geometric parameters of the magnetic rock that produces
the anomaly. Magnetic interpretation techniques such as
detailed processing, 2D filters and 3D modeling can be
applied to better understand the anomaly and suggest
new exploration methods or target drilling. Magnetic
anomalies can be the expression of several types of mine-
ral deposits, such as iron oxide-gold-copper (IOCG) de-
posits, porphyries (Au and Cu), kimberlites (diamonds),
alkaline complexes (phosphate and niobium), nickel
deposits (both sulfide and laterite), volcanogenic massi-
ve sulfide deposits (VMS), and banded iron formations
(BIFs). In this context, the absence of a radiometric ano-
maly coincident with the magnetic anomaly is a strong
clue that we will not find any evidence of the rock at the
surface.

The geophysical data used for the present work co-
rrespond to surveys carried by the Servicio Geoldgico
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Colombiano (SGC), separated in blocks that cover broad
areas of the Andean and eastern parts of Colombia, in-
cluding more than 900,000 linear km of high-resolution
airborne magnetometric and gamma spectrometric data
(Moyano et al., 2018). Each block is surveyed with a line
separation of 500 or 1,000 m and data sampling of 10 Hz
(magnetometry) and 1 Hz (gamma spectrometry), which
yield spatial resolutions of 7-9 m and 70-90 m, respec-
tively. These sampling rates and flight line separations
allow the interpolation of grids with spatial resolutions
of 125 x 125 m and 250 x 250 m, providing details not
previously available in Colombia, considering the broad
coverage of the surveys.

This document presents the interpretation of three
magnetic anomalies located in three different geologic
environments in Colombia: one in the Andes Cordille-
ra, with some surface expression and a gold geochemical
anomaly; one in the San Lucas Range area without any
surface expression; and one in the Amazonian craton wi-
thout surface expression or rock outcrops. Each area has
different levels of previous geologic and mineral potential
knowledge, from a lack of data other than the magnetic
anomaly in the Amazon region to good geological con-
trol, geochemistry and metallogenic characterization for
the Andes anomaly. These three anomalies illustrate the
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potential of the geophysical data acquired by the SGC for
the assessment of mineral resource potential in Colombia.

2. GEOLOGICAL SETTING

Colombia is located northwestern South America, an
area with specific tectonic features and a physiographic
landscape modeled by the complex interactions among
the Nazca, South American and Caribbean plates (Figu-
re 1). The Colombian Andes are considered a mixture of
many fragments of parautochthonous and allochthonous
crustal fragments and tectonic wedges of continental, pe-
ri-cratonic and oceanic affinities. These fragments were
accreted by strike-slip faults and subduction zones along
the NW margin of the Guyana shield during many pe-
riods, with some of the major periods occurring in the
Permo-Triassic, Jurassic and Late Cretaceous (Bustaman-
te et al., 2017). This highly fertile metallotectonic envi-

ronment is supported by the significant production of
gold, silver, emeralds, platinum group elements (PGE),
ferronickel and other commodities such as copper, lead
and zinc as principal or secondary products at a modest
scale. All of these elements are found in a wide variety
of geological environments, combined with hundreds of
manifestations, occurrences of active or abandoned mi-
nes and showings (Au, Ag, Pb, Zn, Cd, Cu, Mo, Sb, Hg,
Cr, Ni, Pt, Pd, Ti, Mn and Fe); the majority of them have
no historical exploration, and minimal academic studies
are available (Shaw et al., 2019).

The convergent margin regime that was present
throughout the Phanerozoic and the multiple occurren-
ces of mineral deposits related to this tectonic regime led
to the identification of at least three “copper belts” (Si-
llitoe et al., 1982), delimited in the metallogenic map of
Colombia (Lopez et al., 2018) as different “metallogenic
belts” with Jurassic, Miocene and Eocene ages (Figure 1).
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Figure 1. Tectonic setting of NW South America; the inset shows the copper belts and the main geological faults (dashed black lines)

Modified from Lépez et al. (2018)
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Additionally, recent data have defined at least seven mag-
matic/mineralization events with a NNE trend and distri-
buted all across the country (Leal, 2011), which occurred
between the early Paleozoic and the Pleistocene and were
related to magmatic belts, island arcs of variable compo-

sition and intracratonic environments.
3. GEOPHYSICAL METHODS USED

Airborne geophysics is a very useful method to increase
geological knowledge of large and remote areas such as
the Amazonian region of Colombia, not only for geologi-
cal mapping but also for potential assessment of mineral
resources. For this purpose, the SGC began an extensi-
ve airborne geophysical survey that, by the end of 2019,
had accumulated a coverage of nearly 550,000 km? in the
Andean, Caribbean and Amazonian regions, collecting

more than one million linear kilometers of high-quality
magnetometry and gamma spectrometry within speci-
fied polygons, herein referred to as blocks (Figure 2).
Data acquisition was performed with instruments
mounted on “fixed wing” aircraft, with line spacings of
500 m (Andes and Bolivar regions) and 1,000 m (Ama-
zon) and a flight height of 100 m above terrain over flat
areas. In the mountainous areas, a “drape” survey design
was used with heights between 100 and 300 m or more,
securing aircraft safety and good data quality. The on-
board geophysical equipment included high-sensitivity
magnetometers that recorded the variations in the Earth s
magnetic field, 512- to 1,024-channel gamma spectrome-
ters with 2,056 in® of downward-detection crystals and
high-definition GPS and radar altimeters to ensure the
quality of the raw data. The sampling rates were 10 Hz for
magnetometry and 1 Hz for gamma spectrometry, measu-
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Figure 2. Blocks selected for airborne geophysics surveys
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ring geophysical data every 7 to 9 m and 70 to 90 m, res-
pectively. The 500 m flight line blocks were processed into
125 x 125 m grids, and the 1,000 m blocks were processed
into 250 x 250 m grids. The processed grids included to-
tal magnetic field anomaly (TFA) and concentrations of
potassium (K, %), uranium (U, ppm) and thorium (Th,
ppm). All postprocessing and interpretation were perfor-
med by geophysicists and external advisors of the SGC.
The magnetometry method, used as an exploration
tool, evaluates the lateral variations in the Earth’s mag-
netic field that are assumed to be a response to the va-
riations in the amounts of magnetic minerals contained
in the rocks. These changes in magnetic mineral content
could mark variations in the rock type or internal changes
due to other geological processes, such as hydrothermal
alteration or metamorphism. Therefore, magnetometry
data are useful to identify magnetic bodies covered by
nonmagnetic lithologies, to delineate geological structu-
res and to target exploration on the increase/decrease in
magnetic mineral content related to the most common
geological mechanisms for ore formation: magma intru-
sion, faulting and hydrothermal alteration processes.
Gamma spectrometry data reflect the relative concen-
trations of the common radioactive elements uranium
(U), thorium (Th) and potassium (K) that are naturally
concentrated through magmatic differentiation. This
process generates the highest concentrations of these ele-
ments in acidic rocks as well as in its metamorphic and
sedimentary-related lithologies. Because of the relation
between natural radioactivity and the mineralogy of li-
thological units, gamma spectrometry helps in the “li-
thogeophysical” characterization of surface materials and
allows the determination of secondary alteration proces-
ses; such processes change the geochemical composition
of the rocks because of the emplacement of magma bo-
dies, which triggers processes that result in ore deposits.

4. DATA PROCESSING AND ANOMALY SELECTION METHODOLOGY

The analysis of the magnetometry information aims to de-
tect and describe data attributes such as geometry, intensity
and orientation that may represent anomalies reasonably
related to geological features. For this purpose, it is useful
to reduce the natural complexity of the magnetic anomalies
by reduction to pole transformation (RTP; Baranov 1957)
or by computation of the analytical signal (AS, Nabighian

1972). Additionally, other transformations, such as the tilt
derivative (Miller and Singh, 1994) and composite ternary
images of different order vertical derivatives (1, 1.25, and
1.5 order), are used to locate anomalies and magnetic do-
mains from a consistent interpretation of the data and to
relate these anomalies to a geological framework, such as
intrusions, dikes, shear zones, kimberlites, carbonatites,
etc., that may host mineral resources.

Gamma spectrometry data are useful to identify and
correlate outcropping lithologies and anomalies in ra-
dioactive element distributions that may be related to
secondary geological processes of mineral enrichment
or depletion, such as hydrothermal alteration zones and
weathering zones. The use of gamma spectrometry ima-
ges (potassium, uranium or thorium) and ternary red,
green, blue (RGB) images (red = K, green = Th, blue =
U) with lithological information and magnetic anomalies
enhances the geological interpretation and the possible
types of related mineralization.

For the data processing, interpretation and target se-
lection from geophysical airborne data, a procedure to
generate standardized information for the entire area co-
vered is established. The suggested steps are as follows:

» Calculate the RTP and/or the analytical signal of the
TFA

» Calculate the tilt angle derivative.

» Calculate vertical derivatives of the RTP and display
them on a ternary RGB image (R = lowest order, G =
middle order and B = highest order)

» Make a ternary image (RGB) of the relative distribu-
tions of the concentrations of radioactive elements
potassium (R), thorium (G) and uranium (B).

»  Select magnetic anomalies and create a regular win-
dow (polygon) around each anomaly.

» Run inverse 3D modeling of each selected anomaly.
For this case, the algorithms used are those inclu-
ded in Oasis Montaj “magnetization vector inversion
(MVT, Ellis et al., 2012)” included with the VOXI ex-
tension using iterative reweighting inversion (IRI) fo-
cusing with 2 passes to sharpen positives.

Considering this information, every 3D model is des-
cribed (geometry of the magnetic source, depth to top,
etc.); then, radiometric data and topography are checked
to identify whether the source crops out or whether a

SERVICIO GEOLOGICO COLOMBIANO
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feature related to the source is modeled. In addition, the
available geology is checked to see if the calculated source
has already been mapped, and other mining (deposits,
occurrences) and geochemical (soil, sediment, rock) data
are integrated to refine the interpretation.

5. EXAMPLES OF ANOMALIES TARGETING AND INTERPRETATION

The procedure presented above was applied to three ano-
malies located in different tectonic and geological settings
(Figure 3): the first one in the Central Andes Cordillera,
the second one in the western foothills of the San Lucas
Range and the last one in the Guyana shield. These ano-
malies were used not only to demonstrate the potential
of airborne magnetometry and gamma spectrometry for
increasing the geoscientific knowledge of wide areas but

also to generate multiple exploration targets to aid in the
development of the mineral potential of Colombia.

5.1 Andes anomaly

The Andes anomaly is located on the eastern flank of the
Central Cordillera of Colombia, where the Triassic core
of the Andes Cordillera and the Cretaceous Antioquia
Batholith form a block limited by the nearly N-S trending
Palestina Fault System to the east and the Romeral Fault
System to the west (Gomez et al., 2015).

5.1.1 Geology

Locally, the southern part of the area corresponds to the
northernmost outcrop of the Antioquia Batholith (Kgd,
Figure 4), with some mafic bodies to the north (Kg), ca-
taclastic granites (Kgn), altered lava flows (Krv) and the
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Figure 3. Locations of the selected anomalies: Andes (1), San Lucas (2) and Guyana shield (3)
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nonmagnetic San Pablo Formation (Kap), a Cretaceous
sedimentary unit frequently intruded by the batholith.
Specifically, the anomaly is related to a quartz-rich dacitic
porphyry (Kda), strongly linked to the edge facies of the
batholith (Hall et al., 1972).

5.1.2 Anomaly description and 3D modeling

The Andes anomaly is detected as a strong (326 nT peak-
to-peak amplitude in the TFA) and large (6 km diameter)
magnetic anomaly located in an area containing several
mineral deposits (Lopez et al., 2018). The gold anomaly
occurrence (yellow dot, Figures 5a and 5b) in the center
of the anomaly is important to prioritize its study. Fur-
thermore, on the tilt derivative image (Figure 5¢), domi-
nant nearly NE-SW lineaments are identified, which may
represent a structural control on possible fluid migration
and/or emplacement.
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Figure 4. Geology of the area containing the Andes anomaly:
Antioquia Batholith (Kgd), mafic bodies (Kg), cataclastic granites
(Kgn), altered lava flows (Krv) and the nonmagnetic San Pablo
Formation (Kap) and quartz-rich dacitic porphyry (Kda)
Modified from Hall et al. (1972)

Figure 5. Magnetometry images of the Andes anomaly: a) Total field anomaly (TFA), b) analytical signal (AS) of the TFA, c) tilt derivative image

with magnetic lineaments. The yellow circle represents the location of the sample with a high gold content
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The ternary radiometric image (Figure 6) shows that
the magnetic anomaly is coincident with a rock outcrop
that presents high grades of Th, U and K, generating a
white color in the image.

The 0.03 SI cutoff isosurface from the 3D magnetic
susceptibility MVI model depicts a large (7 x 3.5 km)
E-W elongated magnetic body (Figure 7). The model
shows some portions close to the surface or cropping out,
but clearly, a large part of the body is below the surface.

The follow-up procedure for this anomaly could in-
clude fieldwork for rock sampling and a regular sampling
grid for geochemical analysis. The data obtained can gui-
de the next steps in the evaluation of the anomaly.

5.1.3 Mineral resource potential

The Andes anomaly is located within the Guadalupe Au-
(Ag) metallogenic district and east of the Amalfi-Anori
metallogenic district (Lopez et al,, 2018). The Guadalupe
district is characterized by the presence of intrusive-related
deposits and includes a copper volcanogenic massive sulfide
(VMS) deposit known as the Guadalupe project (Figure 8).
For this area, geochemical data report 144,000 ppb of gold
from a vein inside the most magnetic portion of the anomaly
and 58.2 ppm of silver within a neighboring dike. Due to the
metallogenic context and known deposits/occurrences in
the area of the Andes anomaly, the exploration target could
be an intrusion-related/VMS and/or epithermal deposit.
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area of low magnetic contrast related to the sedimentary
cover; the anomaly is limited to the east by a strong gra-
dient area related to the Palestina fault-controlled transi-

5.2 San Lucas Range Anomaly
tion to the San Lucas Range crystalline rocks (Figures 10a

This anomaly is located in the northernmost part of the

Central Cordillera in the western foothills of the San Lu-
cas Range at the confluence of the Magdalena and Cauca
rivers. and 10b). The tilt derivative image (Figure 10c) shows
predominantly NNE-SSW-oriented lineaments, one of
which delineates the Palestina Fault located east of the
anomaly and other of which is located west of the ano-

maly. This structural trend interpreted from the geophy-

sical data suggests that the magnetic source “emplace-

ment” was probably controlled between these structures.
There is no relation between the gamma spectrome-

5.2.1 Geology
Nonmagnetic floodplain and lacustrine deposits bounded

to the south by the last outcrops of the Central Cordillera
and some Cenozoic deposits cover the San Lucas Range
anomaly. To the east of the Palestina Fault is mapped the

try data and the magnetic anomaly, which suggests that
deposits and the Sudan Formation (T3s), which consists  there could not be a surface expression of the causative
of very thick beds of conglomerates intercalated with in- ~ magnetic body (Figure 11). However, gamma spectrome-
tervals of clay limestone and beds of tuffaceous sandsto-  try data themselves reflect changes in the surface mate-

rials that are useful for lithogeophysical mapping, such

as changes in the radioactive element contents of the se-
dimentary deposits, delineation of crystalline rocks cro-
pping out to the east of the Palestina Fault and even fault

gneiss of the San Lucas Formation (MPsl), a gneiss often
intruded by igneous bodies and covered by Quaternary

nes (Figure 9).

5.2.2 Anomaly description and 3D modeling
The magnetic anomaly corresponds to an isolated dipole

with a 1,000 nT peak-to-peak amplitude (TFA) withinan  delineation itself.
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Figure 10. Magnetometry images of the San Lucas anomaly: a) Total field anomaly (TFA), b) analytical signal of the TFA, c) tilt derivative image
with magnetic lineaments (black lines) and Palestina Fault (yellow line)
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Since there are no outcrops and no topographic or ra-
diometric expressions, magnetic 3D modeling is the only
choice to estimate the parameters of a possible buried
body of interest. The MVI model with a cutoff magnetic
susceptibility of 0.03 SI shows a “pipe-like” body of 2 x 3
km (Figures 12a and 12b), located at 100 m depth.

5.2.3 Mineral resource potential

The San Lucas anomaly is located 25 km to the west of
the Au-(Ag) metallogenic district of Barranco de Loba
(Lépez et al., 2018). This district is characterized by the
presence of Au/Cu porphyries such as the San Carlos
Project and intrusion-related and epithermal deposits
(Figure 13). The metallogenic context of the area and
the semicircular pipe-like shape of the magnetic source
allows us to estimate that the corresponding target of this
anomaly is more likely to be a porphyry system than a
kimberlite/carbonatite-related body. Therefore, addi-
tional exploration programs for this anomaly should be
airborne gradiometric gravity or ground gravity and air-
borne or ground EM.

5.3 Amazonas anomaly
This anomaly is found in the southeastern part of Colom-
bia, in an area of low relief with a drainage system that
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flows into the Amazon River and is covered by a dense
tropical rainforest.

5.3.1 Geology

The surface geology corresponds to nonmagnetic Neo-
gene rocks with ferruginous matrixes (conglomerates,
sandstones, claystone, and in some cases coal) that are
poorly consolidated and dissected by the principal dra-
inages of the area (Figure 14). The magnetic basement
rock can be related to the Mitd Complex (Rodriguez et
al,, 2011), composed of subalkaline high-potassium roc-
ks, in some places with enrichments in rare earth element
(REE) minerals.

5.3.2 Anomaly description and 3D modeling

This single magnetic anomaly has a very strong (2,000 nT')
peak-to-peak amplitude (TFA) and lacks surface expres-
sion (Figures 15a and 15b). Through a flight with 1,000 m
line spacing, it appears in four flight lines. Because such
anomalies are not expected in the sedimentary rocks that
crop out and because there is neither radiometric signatu-
re nor geological evidence of a causative body coincident
with the magnetic anomaly (Figure 16), 3D modeling of
the magnetometry is used to estimate the shape, depth and
other parameters of the subsurface body.

Figure 12. 3D model of the San Lucas anomaly: a) TFA superimposed with the 3D framework of the susceptibility model with a cutoff of 0.3 SI, b)
cross section of the magnetic susceptibility model from 3D MVTI inversion with the 3D image of the RTP
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Figure 16. Ternary radiometric image of the Amazonas anomaly with contoured radiometric domains

Figures 17a and 17b show the results of the 3D MVI
inversion with a magnetic susceptibility cutoff of 0.003 SI.
The isosurface shows a 4 km x 3.5 km magnetic source

zation (remanence).

located close to the surface. Additionally, the shape of the
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dipole in the TFA anomaly (Figures 15a and 17b) could
indicate that the magnetic body has a complex magneti-
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Figure 17. 3D model of the Amazonas anomaly. a) TFA superimposed with the 3D framework of the susceptibility model, b) cross section of the
magnetic susceptibility model from 3D MVI inversion and the 3D image of the RTP

5.3.3 Mineral resource potential

The average depth of the modeled source (top of the
body) is 40 m, and it is not possible to determine either
the source petrology of the source or the economic value.
Additionally, the anomaly is in an area with poor geolo-
gical knowledge due to the dense rainforest coverage and
lack of infrastructure.

However, isolated magnetic bodies located within the
sedimentary cover in the Amazonian Craton have the
potential to be alkaline rocks. Kimberlites (diamonds)
and carbonatites (phosphate, niobium, and REEs) are the
main economic targets of anomalies. In this case, roc-
ks of the Miti Complex have REEs, niobium (Nb), and
tantalum (Ta) minerals associated principally with gra-
nitic pegmatites, dikes and acidic stocks, which intrude
the complex and could also be the source of tin (Sn) and
tungsten (W) (Lépez and Cramer, 2012).

A mineral exploration program should apply other
methods and then drill the anomaly to find the source.
The additional methods suggested for this anomaly are i)
ground magnetics and ii) airborne gradiometric gravity
or ground gravity.

6. DiscussioN

As explained above, the metallotectonic environment and
known mineral deposits in the NW Andes and Colombia
reflect a subduction-related affinity with magma genera-
tion and emplacement. For exploration purposes in this

kind of geological setting, magnetometry has advantages
over other geophysical methods due to the strong correla-
tion between magnetic mineral contents and ore-deposit
generation. In this work, the processing and interpreta-
tion of the magnetometric data focus on going beyond the
anomaly detection itself to more specialized modeling of
the magnetic source geometrical parameters and struc-
tural framework, integrated with gamma spectrometry
and available geological, geochemical and metallogenic
data. This integration methodology helps in the identi-
fication, characterization and fieldwork prioritization of
the magnetic anomalies found in the blocks covered by
the airborne surveys.

The Andes anomaly is located at the northern edge of
the Antioquia Batholith. The MVI magnetic susceptibility
model shows a nearly 7 km E-W elongated body located
mostly at depth but with some possible outcrops related
to a radiometric signature. The local geology identifies a
Qz-rich dacitic porphyry (Kda, Figure 4) in the area of
the anomaly, so it is possible that the magnetic source co-
rresponds to the subsurface extent of this intrusive rock.
This indication should increase the potential for mineral
resource exploration beyond the outcropping portion of
the rock. The presence of 144,000 ppb gold value in a vein
sample that is located at the center of the magnetic source
also suggests important potential but demands more de-
tailed work. The location of intrusion-related/ VMS Au/
Cu deposits close to the anomaly and the delimitation of
a metallogenic district in the area are key facts to priori-
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tize the study of this anomaly. The data processing also
allows the identification of NE-SW lineaments that re-
present a structural control on a possible fluid migration
and/or emplacement of a potential ore.

The San Lucas Range anomaly is covered by non-
magnetic fluvial and lacustrine deposits of recent age.
To the east of the anomaly, separated by the Palestina
Fault (NNE-SSW), metamorphic rocks of the San Lucas
gneiss (MPsl, Figure 9) crop out. There is no surface or
gamma spectrometric expression related to the anomaly,
which supports the idea that the magnetic source is bu-
ried under recent sediments. Magnetometry interpreta-
tion marks predominantly NNE-SSW lineaments such as
the Palestina Fault trend and suggests possible structu-
ral control on the emplacement of the magnetic source,
which appears to be limited by these lineaments to the
west and by the Palestina Fault to the east. The MVI mag-
netic susceptibility model shows a 2 km x 3 km “pipe-li-
ke” body located close to the surface, which could indica-
te that the magnetic source is not related to the magnetic
igneous-metamorphic basement and probably is a mag-
matic body intruded within less magnetic rocks. There is
no direct evidence of fertile rocks or mineralization over
the anomaly, but 25 km to the east, the Barranco de Loba
metallogenic district is delimited, characterized by the
presence of several Au (Cu) porphyry, intrusion-related
and epithermal deposits and occurrences. The size and
shape of the MVI model of the magnetic source and the
regional metallogenic context allow us to estimate that
this anomaly could be related to an intrusive body with
exploration potential for porphyry, intrusion-related
and/or epithermal deposits.

The Amazonas anomaly is located in a very remote
area of the Amazon rainforest where geological and me-
tallogenic knowledge is restricted to regional extrapola-
tion from sparse observation points. There is no surface
or gamma spectrometry evidence that can be related to
the anomaly. The magnetic anomaly shows a complex
dipole with a very strong (2,000 nT) amplitude that sug-
gests that the magnetic source could have strong remnant
magnetization and be located within almost nonmagne-
tic rocks. Additionally, the dipole shows sharp lobes, sug-
gesting that the source is buried very close to the surface.
The MVI magnetic susceptibility model shows a 2.5 km x
3 km source located close to the surface. Even in the ab-
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sence of detailed geological, geochemical or metallogenic
information, it is possible to extrapolate the evidence and
deposits discovered in other cratonic areas (Brazil and
Venezuela) and expect that this kind of nearly cylindrical
and isolated magnetic anomaly is related to alkaline roc-
ks, kimberlites or carbonatites.

It is important to remember that geophysical data,
for mineral exploration purposes, imply the estimation
of physical properties of the rocks and materials of the
subsurface by indirect measurement of the perturbation
of a natural field or an induced signal due to contrasts in
these properties. Furthermore, the use of mathematical
modeling to quantitatively estimate the distribution of
the selected physical property that corresponds to the ob-
served perturbation has almost infinitely many different
solutions (the nonuniqueness principle) that can be redu-
ced to more geologically related models when integrated
with field data.

In this context, the magnetic susceptibility cutoff used
to represent the dimension and geometry of each of the
magnetic sources (0.03 SI for the Andes and San Lucas
anomalies and 0.003 SI for the Amazonas anomaly) from
the MVT are estimated with the analytical signal (AS) of
the TFA. The AS is a mathematical transform that redu-
ces the dipolar signature of a magnetic anomaly and has
the effect of strengthening at the edges of the magnetic
source (Nabighian, 1972). Using this attribute, the mag-
netic susceptibility from the model is chosen so that the
surface expression of the isosurface is close to the borders
of the AS of the anomaly. For this reason, the magnetic
susceptibility used for this work must be considered only
a reference parameter estimated by mathematical criteria
and has to be compared with petrophysical data. Howe-
ver, it is still a reliable and useful approximation in the
absence of petrophysical data collected from rocks in the
field.

For the anomalies and models presented in this work,
the Andes anomaly has strong geological, geochemical
and metallogenic controls that allow us to demonstrate
the mineral potential in this area, and the 3D modeling
of the magnetic source reinforces this potential. For the
San Lucas and Amazonas anomalies, the lack of other
geoscientific data must encourage exploration in these
areas because geophysical modeling shows that there are
magnetic sources that have to be explained, and given our
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actual knowledge of the area, there is no evidence of po-
tential other than the geological setting and, in the case
of the San Lucas anomaly, the known mineral deposits in
the surroundings.

The results presented in this work illustrate the me-
thodology used to manage geophysical data (magneto-
metry and gamma spectrometry) for the evaluation of the
mineral resource potential in Colombia. The three ano-
malies presented are located in different geological con-
texts within the country and represent strong evidence
that the integration of available geological, geochemical
and metallogenic data with advanced geophysical mo-
deling will provide a better understanding of the nature,
geometry and subsurface distribution of potential targets
and hence optimize efforts and resources in the fieldwork
phase.

7. CONCLUSIONS

The acquisition of high-resolution airborne magnetome-
try and gamma spectrometry generates valuable informa-
tion to increase the geoscientific knowledge of Colombia
and allows target identification and interpretation for mi-
neral resource exploration. For this purpose, three mag-
netic anomalies were selected to illustrate the data pro-
cessing methodology used for the identification of areas
of interest for future investigation.

The Andes anomaly is interpreted as a magnetic (0.03
SI) source 3.5 km x 7 km wide and located at depth with
some surface expression correlated with gamma spectro-
metry. The geological data correlate this anomaly at the
surface with a Qz diorite porphyry, suggesting that the
subsurface extent of the intrusion is wider. This anomaly
is located within the Guadalupe (Au/Ag) metallogenic
district and is a potential target for intrusion-related,
epithermal or VMS deposits. The evidence of magnetic
lineaments and a vein sample with gold suggest structural
control for fluid migration and ore deposition.

The San Lucas anomaly is modeled as a magnetic
(0.03 SI) “pipe like” source 2 km x 3 km wide, located
close to the surface and surrounded by almost nonmag-
netic rocks. There is no surface expression related to the
anomaly, and the geological data indicate the presence of
recent fluvio-lacustrine deposits. The magnetometry su-
ggests a possible control by NNE-SSW lineaments on the

emplacement of the source; one lineament is correlated
with the Palestina Fault in the east. The presence of the
Barranco de Loba Au (Cu) metallogenic district 25 km to
the east and the regional metallogenic context mark this
anomaly as a target for porphyry/intrusion-related and
epithermal deposits.

The Amazonas anomaly MVI model (0.003 SI) shows
anearly cylindrical 2.5 km x 3 km body, surrounded by al-
most nonmagnetic rocks and located close to the surface
but with no topographic or gamma spectrometric corre-
lation. Geological knowledge about the area is minimal,
but evidence from deposits identified in other areas of the
Amazonian Craton and the potential estimated for rocks
of the Mit complex allow us to consider this anomaly a
potential target for carbonatite/kimberlite deposits.

Considering that there must be very few outcrops of
mineral deposits yet to be found, the supply for the mine-
ral market must be obtained from underground deposits.
This fact, added to the global requirements of environ-
mental protection, means that geophysical methods are

increasingly fundamental in mineral prospecting.
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ABSTRACT

The Matachines field, located in the Girardot subbasin, Upper Magdalena Valley (Valle Superior del Magdalena — VSM)
basin, has a morphology characterized by antiforms arranged along a N-S axis. These antiforms involve multipha-
se tectono-sedimentary sequences with half-graben geometries associated with Mesozoic sequences reactivated by at
least three Andean phases. Bedding surfaces are mechanically active planes that contribute to the flexural slip that is
generated by the folding of multilithologic sequences. In the Matachines field, the bedding planes help to improve the
petrophysical characteristics of the reservoirs by incorporating a significant number of discontinuities, which comple-
ment the fluid connectivity. Thus, the subhorizontal planes are linked to subvertical fractures preferentially arranged
in the ENE-WSW direction, generated by horizontal compressive stress. In particular, these effects are magnified on
the western flank and hinge zone of the anticline structure, where they contribute greatly to the connectivity of the
production wells. In naturally fractured reservoirs, the correct 4D technical and economic evaluation of the quality
and arrangement of discontinuities is essential to determine their actual contribution to improving the petrophysical
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1.INTRODUCTION

properties of such reservoirs. Accordingly, many methods often used to study wells from core
samples or images identify, along with different types of fractures, the presence of bedding surfa-
ces, although they evaluate them separately, so they overlook petrophysical factors that affect the
porosity and permeability of the wells. The present study discusses the genetic and morphological
aspects of bedding surfaces that enhance the petrophysical potential of reservoirs, which usually
have limited primary values of permeability and porosity, to meet the economic expectations of
specific resources in hydrocarbon exploration and/or production activities.

Keywords: Petrophysics, unconventional reservoirs, hydraulic fracturing, Matachines field, VSM, Colombia.

RESUMEN

Los campos Matachines, localizados en la subcuenca de Girardot (cuenca del valle superior del
Magdalena), presentan una morfologia antiformal con su eje dispuesto en rumbo submeridianal
que involucra secuencias tectosedimentarias multifasicas en las que pueden reconocerse geome-
trias de hemigraben asociadas con las secuencias mesozoicas que han sido reactivadas por al me-
nos tres fases andinas. Las superficies de estratificacion son planos mecanicamente activos contri-
buyentes de los flexodeslizamientos que genera el plegamiento de secuencias multilitoldgicas. En
los campos Matachines, la estratificacion contribuye a mejorar las caracteristicas petrofisicas de sus
reservorios al incorporar una importante participacion de discontinuidades que complementan la
conectividad de los fluidos. Asi, desde sus posiciones subhorizontales se vincula con los planos de
fracturas subverticales dispuestos preferencialmente en direccion ENE-WSW, generados por los
esfuerzos compresionales horizontales. En particular, estos efectos se magnifican sobre el flanco
occidental y charnelar de la estructura anticlinal, donde exhiben una mayor participacion en la
conectividad de los pozos productivos. En los reservorios considerados naturalmente fracturados,
la correcta evaluacion técnico-econdémica 4D de la calidad y disposicion de las discontinuidades
es fundamental para determinar las mejoras petrofisicas que determinan. En este sentido, muchas
metodologias habitualmente aplicadas en el estudio de pozos a partir de ntcleos o imagenes re-
conocen, ademas de distintos tipos de fracturas, la presencia de superficies de estratificacion. Sin
embargo, se las evalia separadamente, lo que no incide estadisticamente en las consideraciones
petrofisicas que contribuyenan evaluar su porosidad y permeabilidad. Se discuten los aspectos
genéticos y morfologicos de las superficies de estratificacion que contribuyen a aumentar la po-
tencialidad petrofisica de los reservorios, cuyos valores primarios de permeabilidad y porosidad
suelen ser limitados, para sostener expectativas econémicas satisfactorias de ciertos recursos en
actividades de exploracion o produccion de hidrocarburos.

Palabras clave: petrofisica, reservorios no convencionales, fracturacién, campo Matachines, VSM, Colombia.

Serra, 2008) identify and quantify the presence of bed-
ding surfaces, but they evaluate them in separate statis-

In naturally fractured hydrocarbon reservoirs, the correct
4D technical and economic evaluation of the quality and
arrangement of fractures is essential to determine their
actual contribution to improving the petrophysical pro-
perties of such reservoirs. Many petrophysical methods
that are often used to study wells from core samples of
images (Aguilera and Aguilera, 2004; Bratton et al., 2006;
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tical analyses and not within the petrophysical model.
Thus, by analyzing them separately from discordant frac-
tures, they are overlooked in geo-economics considera-
tions of their reservoirs.

Naturally fractured reservoirs often present a pro-
duction paradox because their initially high producti-
vity tends to decline rapidly. Many are also responsible
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for early gas or water penetration. However, they include
some of the largest and most productive reservoirs, exp-
laining the growing industry efforts to learn more about
them and to more accurately model them.

The Matachines field (03°49' N-74°53" W) is located
in the Girardot subbasin, within the Upper Magdalena
Valley (Valle Superior del Magdalena - VSM) basin, sim-
ilarly to the Purificacién, Chenche, and Guando oilfields
(Figure 1). The structure of these oilfields is generally
characterized by tight and faulted anticlines and by wide
synclines with an axis that runs roughly NNE-SSW, re-
lated to west-vergence thrust faults that are linked to the
uplift of the Eastern Cordillera of Columbia (Campbell
and Burgl, 1965; Corrigan, 1967; Anderson, 1972; But-
ler and Schamel, 1988; Cooper et al., 1995; Barrero et al.,
2007 and Higuera, 2012, among many others).

In the present study, the structural aspects that contri-
bute to creating the genetic and morphological characte-
ristics of the bedding surfaces underlying the petrophysical
potential of the Matachines field reservoirs are discussed.
We focus on sectors where the primary permeability and
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Figure 1. Location of the Matachines field in the VSM

porosity values are usually too low to meet economic ex-
pectations in hydrocarbon exploration or production ac-
tivities. These analyses and interpretations may be used to
evaluate oilfields with similar characteristics that will be
subjected to exploration and/or production.

2. MEeTHODS

A multidisciplinary study was conducted to correctly
evaluate deformation features associated with fractures.
This study included the analysis of well core or boreho-
le samples, borehole image logs, and a field study aimed
at characterizing the physical attributes of the fractures,
such as their geometry, direction, aperture, length, and
spacing, to classify them into sets. All discontinuity sur-
faces analyzed in the present study ranged in size from
meters to decimeters.

The seismic data were analyzed on a WorkStation
mounted on the Petrel platform to spatiotemporally cha-
racterize the deformations by horizon flattening of sequen-
ces related to the study area, thereby establishing a relative
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criterion to recognize structures before and after the units
that make up the oil system of the Matachines field.

Core samples were analyzed considering the abo-
ve, as extensively described by Nelson (1985), Aguilera
(2001), and by Kubik and Lowry (1993), among others.
The available core samples were tentatively arranged and
spatially oriented according to strike and dip data of the
corresponding wells. The structures were qualitatively
and quantitatively analyzed, organoleptically identifying
some of their mineralogical components, using magnif-
ying glasses in more detailed cases.

Ultrasonic borehole images are electronic records of
well images that provide information on the slope and
azimuth of layers and fractures. These data were tabu-
lated, analyzed, and grouped as a function of slope and
azimuth (Ekstrom et al., 1987) using the algorithm pro-
posed by Fisher (Fisher et al., 1987) because, in general,
this method yields data that are quasi-normally distribu-
ted and requires the mean direction and a concentration
parameter for input. The main direction data of the frac-
tures and microfaults were plotted on stereograms (lower
hemisphere) to assess the vertical configuration of the
fractures in the reservoirs.

This analysis generated a set of characteristic attri-
butes of each fracture pattern, which were tabulated in
data-processing software to quantify their occurrence
percentages, particularly focusing on the identification
of friction surfaces (slickensides), to determine the direc-
tion of the movements in the discontinuity surfaces.

Data were collected from two study areas in a structu-
ral position analogous to the field to analyze fractures in
outcrops, primarily measuring representative fracture sets
by microtectonics to contrast them with the structures ob-
served in ultrasonic borehole images and core samples.

3. GeovrocicaL FRAMEWORK OF THE MATACHINES FIELD

From the standpoint of regional tectonics, VSM is bor-
dered to the west, in the Cordillera Central (Central An-
des), by the Calarma thrust fault system with eastward
vergence, and to the east, in the Cordillera Oriental (East
Andes), by faults with opposite vergence, such as the
Magdalena fault system (Schamel, 1991; Cooper et al.,
1995; Toro et al., 2004).
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Morphostructural features derived from surface and
subsoil data indicate the multiphase evolution of the Ma-
tachines field, which is like that of other regions of
VSM (Figure 2). The main stages of its history, based on
our own data and on interpretations compiled from the
abundant related bibliography, are listed below (e.g., Ir-
ving, 1975; Kroonenberg and Diederix, 1982; Mojica and
Franco, 1990; Bayona et al., 1994; Villamil et al., 1999;
Sarmiento, 2001; Gémez et al., 2003; Sarmiento and Ran-
gel, 2004; Montes et al., 2005; Mora et al., 2010).

3.1 First pre-Andean extensional stage

The tectonic history of the VSM basin started in the
Triassic-Jurassic as a retroarc depocenter, which may
have been controlled, at least partly, by pre-existing Pa-
leozoic anisotropies (De Freitas, 2001). Half-graben geo-
metries are fairly well preserved, albeit usually modified
by the reactivation of at least three Andean phases, which
are described below. Then, during the Cretaceous-Ear-
ly Tertiary, the VSM basin continued as an intracratonic
depocenter with the marine sequences of seals of the
Caballos Formation (Duarte et al., 2018), generating the
hydrocarbons of the Villeta and Guadalupe Groups, re-
sulting in the seals of the Guaduas Formation (Higuera,
2012). Marine transgression and basin subsidence conti-
nued during the late Albian until the Santonian, with the
VSM basin reaching its maximum extension during the
Turonian-Coniacian period (limestones of the La Luna
Formation), with the deposition of sediments very rich in
organic matter, such as limestones from the Tetuan For-
mation, pelites from the Bambuca Formation, and pelites
and limestones from the Luna Formation, from oldest to
youngest (Buitrago, 1994).

Subsequent basin shallowing led to the development
of the shallow marine detrital facies of the Guadalu-
pe Group, which is the main producer of several fields
(Matachines, Purificacion, and Guando) in the Girardot
subbasin and of the Monserrate Formation in the Neiva
subbasin (Barrero et al., 2007). Marine regression during
the Late Cretaceous, with coastline progradation, caused
the deposition of fluvio-deltaic sediments of the Guaduas
Formation (Late Maastrichtian?-Paleocene), but uplifts
during the early-to-middle Eocene eroded these sedi-
ments in the highest sections of the basin (Cooper et al.,
1995).
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1. Formation of normal faults in the initial stage of rifting during
the Triassic-Jurassic.

Rl

Sinsedimentary depositation during Jurassic-Early Cretaceous
and further deepening to accommodate the sediment load.

3. Continuation of the sedimentary deposition during the Late
Cretaceous and decrease in depth shifts of normal faults.

4. Culmination of the rifting period and start of the deposition

of the post-rifting sequence during the Paleogene, generating
the simple half-graben geometry.

EXTENSIONAL EVOLUTION

Figure 2. Idealized scheme of the structural evolution of VSM

3.2 Peruvian phase (first stage of compressional
inversion)

The Peruvian phase (Cobbold et al., 2007), or the “Mo-
chica event” (De Freitas et al., 2006), has been in general
overlooked in Colombia, despite its comprehensive cha-
racterization in the rest of the Andes (Pindell and Tab-
butt, 1995). In VSM, the Peruvian phase overlaps with
the Albian-Cenomanian, as discussed by Jaimes and De
Freitas et al. (2006), based on observations by Van der
Wiel (1991) in the Garzén massif. De Freitas et al. (2006)
recognized evidence of this phase in the Balcon region,
where they observed half-graben geometries with clear
mild inversions, which occurred during the Late Albian-
Cenomanian, as shown by thinning and overlap of pelites
of the Bambuca Formation. The NNW-ESE direction of
the faulting suggests that compression primarily occurs

TRANSPRESIONAL EVOLUTION

5. Deposition of post-rifting carbonaceous, clayey, and
fluvial sequences of basin filings from the Paleogene to
the Miocene.

Q0

gi=N

6. Reactivation of ancient normal faults derived from rifting
in transpressional faults: basin inversion, associated with
the last contraction during the Neogene.

7. Increase of transpressive faulting and current situation.

in the WSW-ENE direction, which would transpressio-
nally reactivate the Jurassic faulting in the ENE direction.
Thus, they suggested that an early uplift of the Balcon
area during this phase may have positively affected the oil
system by generating secondary porosity in the Caballos
Formation and by controlling subsequent deformations
and migration patterns.

3.3 Incaic phase (second stage of compressional
inversion)

The Incaic phase of Andean orogeny started during the
early Eocene (for further details, please refer to Cobbold
etal., 2007), with the increase in the speed of convergence
between the Nazca plate and the South American plate,
a determinant of crustal shortening structures expressed
by thrust faults involving the basement, especially in the
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Figure 3. Generalized stratigraphic column of VSM, related to the oil system of the Matachines field
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areas neighboring or on the western and eastern margins
of the Cordillera Central. The continental sediments of
the Gualanday Group were deposited from the late Eoce-
ne until the late Oligocene. The Incaic phase, the “Early
Andean event” (De Freitas et al., 2006), is identified in the
Balcén area by Cenomanian horizon flattening (top of the
Bambuca Formation) in seismic interpretation, where the
angular discordance postdates the most intense deforma-
tion pulse of the area. This event is widely distributed in
VSM and has been partly obliterated by the most modern
Andean tectonic phases. Despite generating controversy,
the age of this discordance is most often attributed to the
Middle Eocene (e.g., Schamel, 1991; Cooper et al., 1995;
George et al.,, 1997). However, De Freitas et al. (2006), in
line with Buitrago (1994), consider that this discordance
is younger, with an Oligocene age in the Neiva subbasin
because it is immediately superimposed by the Barzalosa
Formation (late Oligocene to early Miocene) by the ba-
sal section of the Honda Group, attributed to the middle
Miocene (Guerrero, 2002). The configuration produced
during this phase persists until the late Miocene, when
the oil generation peaks, and is thus a key controlling fac-
tor of hydrocarbon entrapment (Higuera, 2012).

3.4 Quechua phase (last stage of compressional-
transpressional inversion)

Between the late Miocene and the present Quechua pha-
se of Andean orogeny (Cobbold et al., 2007), the defor-
mation and uplift of the Cordillera Oriental led to ano-
ther compression period, with new thrust faults with
westward vergence, which correspond to the Boquerén
fault system, and subsequent deposition of continental
sediments of the Honda Formation. The Quechua pha-
se, or the “Andean” event of De Freitas et al. (2006), cau-
sed the main uplifts of the region, including those of the
Cordillera Oriental, which through thrust faults such as
the Garzon fault superimpose these mountain ranges on
VSM and produce the exhumation of Jurassic rocks ex-
ceeding 8,000 feet. In the Neiva region, an ENE-WSW
compression is suggested by numerous folds, whose axes
are arranged perpendicularly, preferentially in the WSW
direction. This deformation succeeded the deposits of the
Honda Formation, dated to the middle Miocene (Guerre-
ro,2002). Similarly, a discordance is observed at the base of

the Gigante (or Mesa) Formation, which was presumably
formed between the late Miocene and the Pliocene and
which is gently uplifted in the eastern flank of the basin
(De Freitas and Vallejo, 2000). During the Pliocene, stri-
ke-slip faults developed along the NW-SE direction, in-
volving the basement and displacing the axes of the folds
and of the main faults, due to differential movements of
large blocks. Later, from the middle Tertiary, the VSM
basin became a marginal foreland basin with continental
deposits of the Gualanday Group and Barzalosa Forma-
tion, and finally, from the late Tertiary to the present, it
became an intermountain basin with the deposits of the
Honda Formation (Barrero et al., 2007).

The Neiva and Girardot subbasins of VSM are struc-
tural depocenters of the late Cenozoic staggered between
the Columbian Cordillera Central and Oriental, which
contain three main depositional sequences up to 9,000
m thick on a Paleozoic crystalline basement, which are
summarized as follows: 1) Triassic to Jurassic nonmarine
siliciclastic rocks and underlying carbonate sequences; 2)
Middle Cretaceous to Paleogene marine to nonmarine
clastic and carbonate sequences; and 3) a Neogene po-
tent nonmarine molasse-like sequence. According to Bel-
tran and Gallo (1979), to Buitrago (1994) and to Higuera
(2012), the sandstones of the Guadalupe Group (Cam-
panian-Maastrichtian) were deposited in a marine envi-
ronment from the shallow shelf through the continental
shelves to marine-influenced coastal shelves (Figure 3).

The Guadalupe formation contains the main produc-
tive reservoirs with petrophysical characteristics, accor-
ding to observations of outcrops and core samples avai-
lable in and collected from the various exploration and
production wells. These make it possible to differentia-
te an Upper Guadalupe or “Arup” alloformation (upper
sandstones) and a Lower Guadalupe or “Arlo” alloforma-
tion (lower sandstones), separate from the Middle Gua-
dalupe or “chert” alloformation (Figure 4).

The pelites of the Villeta Group (late Albian to San-
tonian) are the main hydrocarbon-generating rocks, and
the oil extracted from the fields may come from gene-
ration areas located in the nearest synclines or from the
vertically deepest areas of production structures (Barrero
et al.,, 2007; Higuera, 2012).
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Guaduas Alloformation

Upper
Guadalupe
Alloformation

Cross bedded croarse-grained
sandstone

Bioturbated fine-grained sandstone

Bioturbated fine-to-medium grained
sandstone

Venganza - 001

Revancha - 001ST

Revancha - 002ST

Middle
Guadalupe
Alloformation

Lydite and siliceous siltstone

Guadalupe
Allogroup
Revancha - 002ST
Venganza - 011
Bioturbated fine-grained sandstone
Revancha-011
Lower
Guadalupe Revancha - 006
Alloformation Venganza - 017
Venganza - 007
Bioturbated fine-to-medium grained
sandstone
Villeta Allogroup —Z

Figure 4. Petrophysical characteristics of the Guadalupe Allogroup, based on outcrop data and core samples

4. STRUCTURAL OBSERVATIONS OF THE MATACHINES FIELD

The Matachines field is located immediately west of the
southern end of the Prado syncline and west of the pro-
minent reliefs of the Guadalupe Formation (Figure 5).

The main hydrocarbon production zone is associated
with horizons of the Guadalupe Formation, consisting of
structural traps with effective closures located in the hin-
ge area of an asymmetric anticline (with a flatter western
flank and a steeper eastern flank) and with a N-S axis,
gently dipping towards both ends. The Venganza fault is
arranged immediately above the hydrocarbon produc-
tion zone, differentially bisecting the upper flanks, so that
the upper ranges of the Guadalupe Formation (Arup) are
partly absent in the eastern section (Figure 6).

A plan view of the Matachines field shows the asym-
metric anticline that generates this field, with a steeper
eastern flank than western flank. The South Matachines
Field is not a simple structural continuation of the Nor-
th Matachines Field and is related to the gradual change
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in subsidence of the Vengeance fault plane, to the sou-
thward tilt of the reservoir layers and to the presence of
structural imbrications (Saavedra, 2013). The westward
change in direction of the South Matachines Field in
relation to the North Matachines Field results from the
action of a structural transfer in the sinistral transverse
direction (intra-Matachines transverse zone) to the main
fold structure (Figure 7).

In a sublatitudinal section, a differentially eroded
asymmetric fold affected by compressional faulting is
identified, showing a two-scale model based on the South
Matachines Field (Figure 8).

Secondary reverse faults increase the structural com-
plexity of the area of interest in such a way that the Gua-
dalupe Formation is repeated in structural units, as found
in well REV 09; thus, other reservoir horizons most likely
exist in the area. Based on the interpretation of the well
logs, the Guadalupe Formation would have been affec-
ted by the second detachment and saturated with oil in
the REV 01 well. From a morphological standpoint, the
hydrocarbon-producing horizons of the Guadalupe For-
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Figure 5. Digital topographic map of the South and North Matachines Field and Purificacion, located between the Prado syncline and the

Magdalena River
w
o 174 174 174 174 174 174 174 174 174 174
. 51101 151 L20L, 251 300 350 400 450 500
West Well Monicongo 1 East
(proyecte
-500
-10004  Honda Gr. \
L \ Prado fault
rlsooi
f| GuaduasFm. Venganza
-2000 Fault
,| Guadalupe Gr.
2500 Villeta Gr.
-3000
"
-3500
"
~4000

-10004
-1500H
-2000

M
-2500
-30004
-35004

M

-4000 4

174
51

174
101
2

174
5

174 174 174 174 174 174 174
2?1 . 300 3%0 A?O 4.50 500

=20

-5004
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Figure 7. Plan-view map of the Venganza fault structure showing the
distribution of the fractures based on well log data

mation are discontinuous due to the truncation of the
Paleocene discordance. These horizons are intact in the
western flank, but only the lower Guadalupe Formation
(Arlo) horizons are preserved in the eastern flank.
According to the available GPS data on the tectonic
movement (Tremkamp et al., 2002; Acosta et al., 2004),
the current horizontal maximum principal stress field is
arranged sublatitudinally due to the sublatitudinal con-
vergence between the Nazca and South America plates,
albeit with variable rates and directions. The maximum
horizontal principal effort is oblique to the Caribbean
margin, indicating a dextral transpressional component,
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Figure 8. Hydrocarbon-producing horizons of the Guadalupe
Formation partly truncated by the Paleocene discordance of the
basement of the Gualanday Formation and intersected by the thrust
fault Revancha (blue surface), which overlaps Mesozoic sequences
(example of the VEN 7 well)

highlighting dextral strike-slip components in the faults
of the NE-SW quadrant and sinistral strike-slip compo-
nents in the faults of the NW-SE quadrant.

The overlap pattern of the Honda Formation across
the discordance and the direction of its layers indicates a
clockwise rotation of the compressive stress, now orien-
ted in the NW-SE direction, which would have caused an
uplift of approximately 2,500 feet from an intra-Honda
Formation reference level (De Freitas et al., 2006). Fault
kinematics data collected south of the Balcén area corro-
borate this direction of transportation (Blanco and de
Freitas, 2003).
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5. NATuRrALLY FRACTURED RESERVOIRS

Based on the fracture evidence, the Guadalupe Formation
reservoirs can be characterized as “naturally fractured”
reservoirs because their timely and persistent fractures
may also help to accumulate hydrocarbons. Formation mi-
cro-imaging (FMI) and petrographic analyses of limesto-
nes of the Villeta Group in the Monicongo-1 well suggest
the presence of a good reservoir. In addition, despite the
low density of these fractures, their aperture (considering
Aguilera, 2001) suffices to reach a permeability higher
than 1,000 mD.

As the Guadalupe Formation does not adequately
outcrop in the Matachines field sectors, to acquire mi-
crotectonic data, surveys were conducted near the access
road to the Prado dam, where the wide and clear artificial
cut made it possible to perform semiquantitative obser-
vations (Figure 9).

The outcrops show fractures that, depending on the
granulometric characteristics of the horizons of the affec-
ted Guadalupe Formation, develop differential spacing
and magnitude patterns (Figure 10 and Figure 11).

Discontinuities

mm Planes potentially opened by hydraulic fracturing
mm Planes potentially open by bedding

T Matachines

oil field

Sampled
area

Figure 9. Diagram of fractures surveyed on the access road to the Prado dam. Interpretation of planes potentially opened by hydraulic fracturing
and by bedding on the access road to the Prado dam correlated with the Matachines fields (geological map retrieved from Cossio et al., 1995)
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Figure 10. Photographs of the Guadalupe Formation. a) Detail of pelite sequences on the access road to the Prado dam. b) Detail of sequences of
fine sandstones on the access road to the Prado dam. c) Detail of subvertical fractures filled with carbonates, arranged sublatitudinally. d) Detail
of discordant and concordant fractures with sandstone bedding (chert) on the access roadcut to the Prado dam. e) View of the sequences tilted
eastward on the road between Melgar and Icononzo. f) Detail of E-W fractures in the Guadalupe Formation (Arup), on the top of the mountain
range of the Tres Mesetas camp
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Figure 11. Photographs: a) fractures in sandstone strata of the Guadalupe Formation on a quarry stone road between Guando and Icononzo. b)
Folds in pelite horizons of the Guadalupe Formation on the pass of the Melgar-Icononzo route. c) Fractures located in Tertiary sandstone horizons
in the Prado reservoir. d) Fractures of the Caballos Formation, on the road to Tomogo. e) Dextral strike-slip fault in a REV1-ST1 well core sample;
a 38° plunge in the 107° azimuth direction in layers of the Guadalupe Formation, with bedding at a 34°-35° angle in the 274-284° azimuth direction,
approximately located by 3D analysis. f) Subvertical Dextral strike-slip fault with a N-S axis in a REV1-ST1 well core sample, approximately located
by 3D analysis
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6. ResuLts

Bedding surfaces are mechanically active planes that can
considerably enhance the flexural slip produced by the
folding of multilithologic sequences (Jamison, 1997). In
the Matachines field, bedding also improves the petro-
physical characteristics of its reservoirs by incorporating
a significant number of discontinuities, thereby comple-
menting fluid connectivity from subhorizontal positions
through planes of subvertical fractures generated by the
horizontal compressional stresses, which are preferentia-
lly arranged in the ENE-WSW direction. In particular,
these effects are magnified on the western flank of the
anticline structure and to a large extent participate in the
connectivity of production wells (Figure 12).

The images of the available wells of fine sand hori-
zons, in light-gray colors, with rhythmic laminations
with bioturbations, show microfractures concurrent with

Spartial distribution of
potentially open planes
that may contribute to the
petrophysical characterists
of the reservoirs

. ]

postsedimentary structures, which were used by subse-
quent faults. Thus, for example, one of the main charac-
teristics of fractures interpreted in the VEN-40 well is that
they are conductive, preferentially with an axis along the
E-W direction and rarely in the NE-SW direction. The
highest fracture density, accounting for 67% of the total
data (722), ranges from 0 to 1.6 fractures per foot, distrib-
uted between hydrocarbon-producing horizons (Arlo-2,
Arlo-3, and Arlo-4). In the other 23 % of the data, frac-
ture density ranges from 2 to 3 fractures per foot. The
microfractures have planes with E-W and NNE-SSW di-
rections, on average, and are preferentially located on an
upper chert (from 6,970 to 7,021' MD), at a 60° angle (to
the axis of the well) and with angles of inclination ranging
from 70° to 90°. The main characteristic of the fractures
interpreted in the VEN-15 well is that they are conduc-
tive, with an axis preferentially in the E-W direction and
with rare NE-SW fractures (Figure 13).

o3

o1

03

Figure 12. Idealized diagram of the planes potentially responsible for improving the petrophysical quality of unconventional reservoirs
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The apertures of some fractures were also measured

in core samples with simple techniques such as by using
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gauges. Most apertures were smaller than 2 mm, and

most values were approximately 1 mm or less (Figure 14).
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Figure 14. Graphs of the aperture of fractures in millimeters measured in core samples. Top: VEN-7 well. Total fractures: 45; parallel to the
bedding: 13 (28 %). Bottom: REV-1ST well. Total fractures: 24; parallel to the bedding: 4 (17 %)

SERVICIO GEOLOGICO COLOMBIANO

37



Rossello / Saavedra

In the reservoirs that, in addition to their primary ties is essential to determine their actual contribution to
characteristics, are considered naturally fractured (Hen-  improving the petrophysical properties of such reservoirs
nings et al., 2000), a correct 4D technical and economic (Figure 15).
evaluation of the quality and arrangement of discontinui-
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Figure 15. Fracture aperture in millimeters from BHI records

Left: compilation of D/L ratios of ten fracture aperture sets. Fracture length vs. fracture aperture as a function of n- 0.5 exponents. The dashed black
lines represent square root functions. Gray dashed lines are linear functions (retrieved from Klimczak et al., 2009). Right: histogram of fracture
aperture vs. frequency
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The relationships between the permeabilities and po-
rosities of hydrocarbon-producing horizons of the Gua-
dalupe Formation in some wells derived from the South
and North Matachines Fields show fairly regular beha-
viors, albeit with different dispersions, most likely due to
the direction of the intersecting boreholes (Figure 16).
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The relationships between porosity and horizontal per-
meability in core samples corresponding to the levels of the
Arup and Arlo horizons in the VEN-1, VEN-17, REV-1ST,
REV-2ST, and REV-6 wells of North and South Matachines
clearly show that bedding-lamination produced mechani-
cal boundaries that increased permeability (Figure 17).
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Figure 16. Graphs of relationships between porosity and permeability in core samples from wells
Top: Arup horizons in the South Matachines Field. Bottom: Arup and Arlo horizons in the North Matachines Field
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Figure 17. Relationship between core depth and permeability of hydrocarbon-producing horizons, wherein permeability increases at the

mechanical boundaries between layers

Permeability was compared between vertical and ho-
rizontal wells, considering permeability data in hydro-
carbon-producing horizons within stratigraphic units
expressing mechanically active boundaries, showing that
permeability is higher in horizontal wells than in vertical
wells (Figure 18).

The greater permeability of horizontal wells should
have been generated by their location in the top hinge
section of the main structure of the field (Figure 12),
which in turn has higher flexural slip folding and there-
fore higher permeability in the stratigraphic mechanical
boundaries. For this reason, horizontal wells parallel to
the bedding in the hinge areas are more likely to inter-
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sect dilating sectors with better porosity and secondary
permeability characteristics. Furthermore, when they are
located in the top sections of the hinges, the locally more
extensional conditions favor their development.

Based on the morphostructural features identified in
the surface and subsoil data, the Matachines fields shows
a multiphase evolution, which may have been controlled,
at least partly, by pre-existing Paleozoic anisotropies. The
new structural interpretation on the geologic time sca-
le shows a main fault in the WNW-ESE direction in the
North Matachines field, which is consistent with the frac-
ture data from the BHI analyses (Figure 19).
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Figure 18. Comparative graph of the permeabilities of the same sands or stratigraphic units (mechanical boundaries) of vertical and horizontal
wells

Structural map in
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Figure 19. Plan view of the conceptual model of the permeability domains related to the interpreted fracture patterns. Areas with numerous

fracture intersections highlight interconnected fracture patterns determining a likely circular drainage. Areas where fractures lack intersections
show a more elliptical drainage pattern because they run parallel to the fractures
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Accordingly, many commonly used methods for stud-
ying wells from core samples or images (Nelson, 1985;
Nelson and Serra, 1995; Rider, 1986; Ortega and Marret,
2000; Laongsakul and Diirrast, 2011) identify different
types of discordant fractures, but the bedding surfaces
are evaluated separately, which does not statistically con-

sider the petrophysical effects that contribute to porosity
and permeability (Figure 20). Discontinuities due to be-
dding planes are highly important because they control
the distribution of fluids running parallel to the main axis
of folding.

3D distribution of the potentially open ciscontinuities

Open discontinuities by fractures

Subhorizontal connexions

Arin Sup

Open discontinuities by bedding

Figure 20. Idealized diagram of spatial relationships of subvertical fracture and bedding planes that contribute to fluid circulation in the Upper

Arlo horizons of the Guadalupe Formation

7. DiscussioN

The action of a compressive stress field is responsible for
the structural style of this basin, characterized by the suc-
cessive action of the Incaic and Quechua phases between
the Eocene and recent times, which started with the re-
activation of the pre-existing normal fault planes during
the distensive tectonics between the late Paleozoic and
the early Cretaceous (Figure 21).
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The tensional state produced by successive Andean tec-
tonic phases has remained active for a long time, as shown
by the differential deformation of sedimentary sequences,
which was more intense in those deposited earlier becau-
se they have accumulated deformations from this stage to
now (overlapping phases). Thus, these earlier (Cretaceous)
horizons may exhibit a more pronounced clockwise rota-
tion of fractures than those generated in the later (Neoge-
ne) sequences of the study area (Figure 22).
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Stress fields affecting Matachines oil fields

Compressional

Quechua Fase

—6>

Transpressional

Peruvian / Incaic Fases

Jurassic - Cretaceous

extensional stage

Figure 21. Evolutionary diagrams of the position of the active stress fields of the Jurassic-Cretaceous and Andean phases on the Matachines field
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Eocene Pliocene

Pleistocene

Present stress field
(WSM)

Figure 22. Evolutionary diagram of the invariable arrangement of the stress field during Andean tectonics and clockwise rotation of the study area.
Top: three ideal states of the model with the invariant stress field (s ). Red, the Prado faulting; dashed yellow line, the transfer zone that separates
the Matachines fields, which are indicated by blue ellipses (MN and MS). Yellow arrows indicate dextral strike-slip components. Bottom left:
rotational model whose older levels accumulate greater rotation. Bottom right: focal mechanism data (circles) retrieved from the World Stress Map
indicating an approximately WSW-ENE direction of convergence (red arrows)

Thus, a simplified scheme highlights discontinuous
tectonic features with warped surfaces, suggesting an in-
crease in (clockwise or counterclockwise) rotation with
depth (Figure 23). These sigmoidal warps, regardless
of possible stress changes due to localized and variable
effective geologic overpressures, would be based on the
fact that sequences deposited earlier accumulate more
rotational deformation than sequences deposited later
within an invariant stress field in space throughout a
contemporary span with all sequences involved (Rosse-
llo, 2018).

Due to the structuring characteristics of the Matachi-
nes field, the boreholes are concentrated in the NNW-
SSE quadrant (subvertical fractures), mostly with a sli-
ghtly plunging direction due to bedding surfaces, so it is
more likely for there to be a higher number of potentially
open fractures per linear meter of their trajectory in the
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reservoir horizons of the Guadalupe Formation (Figure
24).

CONCLUSIONS

In reservoirs with primary sedimentological characte-
ristics that are considered naturally fractured, a correct
4D technical and economic evaluation of the quality and
arrangement of discontinuities should include the effect
of the bedding. Many commonly used methods for stud-
ying hydraulic fracturing from core samples or images
identify bedding surfaces. However, the bedding surfaces,
when evaluated separately, are not sufficiently accounted
for in the petrophysical considerations that contribute to
porosity and permeability.

The seismic data collected in a WorkStation and
mounted on the Petrel platform make it possible to spa-
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Figure 24. Schematic diagram of the preferential direction of a borehole with the highest likelihood of finding potentially open fractures along the
borehole. The direction perpendicular to the dilating fractures corresponds to the minimum principal stress o, (retrieved from Rossello, 2018)
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tiotemporally characterize, with a mechanical criterion of
deformation, a series of pre- and postdiscordance struc-
tures preceding the Honda Group. This tectonic context
favors the development of deformations that tend to ex-
press clockwise rotations as a function of the time in this
stress field. Thus, early generated structures have a higher
clockwise rotation rate than structures generated later.

The NW-SE transverse zone that separates the two
Matachines fields is considered a transfer zone resulting
from an initially normal fault subjected to a sinistral stri-
ke-slip reactivation that has been timely and efficient to
compartmentalize the oil system.

All the available tectosedimentary data on the Ma-
tachines field and on the spatial characteristics of the
hydraulic fracturing assessed in the wells show that the
evolution of the oil system is based on the following pro-
cesses: 1) extensional tectonics, as shown by the normal
growth of the faults that accommodated the deposition of
the Lower Cretaceous sequences; 2) the transpressional
deformation that occurred during the late Cretaceous,
which reactivated pre-existing normal faults; 3) burial
due to deposition and erosion from the Tertiary; and 4)
the structuring that occurred during the Miocene, which
caused the uplift of the area, and the resulting erosion and
reactivation of previous structures. Therefore, the most
important and efficient traps, in terms of timeliness, are
those that formed during the late Cretaceous, before the
maturation of the hydrocarbons.

Bedding surfaces are mechanically active planes that
have enhanced the flexural slip produced by the folding
of multilithological sequences. In the Matachines field,
bedding improves the petrophysical characteristics of its
reservoirs by incorporating a significant number of dis-
continuities, thereby complementing fluid connectivity
from subhorizontal positions through planes of subver-
tical fractures generated by the horizontal compressional
stresses preferentially arranged in the ENE-WSW di-
rection. In particular, these effects are magnified on the
western flank of the anticline structure and near its top
hinge, resulting in their strong effect on the connectivity
of production wells from their subhorizontal positions,
with the action of subvertical fracture planes generated
by the compressional efforts preferentially arranged in
the ENE-WSW direction.

BOLETIN GEOLOGICO 46

ACKNOWLEDGMENTS

The colleagues at Hocol Petroleum Limited are thanked
for their valuable discussions throughout this study,
which helped us understand the technical and regional
aspects of the Matachines field. The meticulous editorial
work and thoughtful comments and suggestions from the
anonymous referees greatly improved the clarity of this
work.

REFERENCES

Acosta, J., Lonergan, L., & Coward, M. P. (2004). Oblique
transpression in the western thrust front of the Co-
lombian Eastern Cordillera. Journal of South Amer-
ican Earth Sciences, 17 (3), 181-194. https://doi.
org/10.1016/j.jsames.2004.06.002

Aguilera, R. (2001). Naturally fractured reservoirs (2nd
ed.). Tulsa: Penn Well Publishing Company.

Aguilera, R., & Aguilera, R. (2004). A triple porosity
model for petrophysical analysis of naturally frac-
tured reservoirs. Petrophysics, 45 (2), 157-166.

Anderson, T. A. (1972). Paleogene non-marine Gua-
landay Group, Neiva Basin, Colombia, and re-
gional development of the Colombian Andes.
GSA Bulletin, 83 (8), 2423-2438. https://doi.
0rg/10.1130/0016-7606(1972)83[2423:PNGGNB]2.0.
CO;s2

Barrero, D., Pardo, A., Vargas, C. A., & Martinez J. F.
(2007). Colombian sedimentary basins: Nomenclature,
boundaries and petroleum geology, a new proposal.
Bogotd: Agencia Nacional de Hidrocarburos y B&M
Exploration Ltda.

Bayona, G. A., Garcia, D. E, & Pabén, G. M. (1994). La
Formacién Saldana: producto de la actividad de estra-
tovolcanes continentales en un dominio de retro-ar-
co. In E Etayo Serna (ed.), Estudios geoldgicos del Valle
Superior del Magdalena (cap. I, pp. 1-121). Bogota:
Universidad Nacional de Colombia.

Beltran, N., & Gallo, J. (1979). The geology of the Neiva
Sub-Basin, Upper Magdalena Basin, southern por-
tion. In ACGGP, Geological field trips Colombia, 1959-
1978 (pp. 253-275). Bogota: Geotec.

Blanco, M. A., & De Freitas, M. G. (2003). Geologia es-
tructural de la zona de Yaguara-Palermo, piedemonte


https://doi.org/10.1016/j.jsames.2004.06.002
https://doi.org/10.1016/j.jsames.2004.06.002
https://doi.org/10.1130/0016-7606(1972)83[2423:PNGGNB]2.0.CO;2
https://doi.org/10.1130/0016-7606(1972)83[2423:PNGGNB]2.0.CO;2
https://doi.org/10.1130/0016-7606(1972)83[2423:PNGGNB]2.0.CO;2

Contribution of bedding to the petrophysical characterization of naturally fractured reservoirs

de la cordillera Central, valle superior del Magdalena,
Colombia. In Memorias del 8.° Simposio Bolivariano
de Exploracion Petrolera en las Cuencas Subandinas
(Cartagena) (t. I, pp. 21-33).

Bratton, T., Viet Canh, D., Van Que, N., Duc, N. V., Gi-
llespie, P., Hunt, D., Li, B., Marcinew, R., Ray, S., Mon-
taron, B., Nelson, R., Schoderbek, D., & Sonneland, L.
(2006). The nature of naturally fractured reservoirs.
Oilfield Review, 18, Summer, 4-23.

Buitrago, J. (1994). Petroleum systems of the Neiva area,
Upper Magdalena Valley, Colombia. In L. Magoon, &
W. G. Dow (eds.), The petroleum system: From source
to trap (pp. 483-497). Tulsa: American Association of
Petroleum Geologists.

Butler, K., & Schamel, S. (1988). Structure along the eas-
tern margin of the Central Cordillera, Upper Magdale-
na Valley, Colombia. Journal of South American Earth
Sciences, 1 (1), 109-120. https://doi.org/10.1016/0895-
9811(88)90019-3

Campbell, C. J., & Burgl, H. (1965). Section through
the Eastern Cordillera of Colombia, South Ame-
rica. GSA Bulletin, 76 (5), 567-590. https://doi.or-
g/10.1130/0016-7606(1965)76[567:STTECO]2.0.
CO;2

Cobbold, P. R., Rossello, E. A., Roperch, P, Arriagada, C.,
Gomez, L. A., & Lima, C. (2007). Distribution, tim-
ing, and causes of Andean deformation across South
America. In A. C. Ries, R. W. H. Butler, & R. H. Gra-
ham (eds.), Deformation of the continental crust: The
legacy of Mike Coward (pp. 321-343). Special Publica-
tions, 272. Geological Society of London,

Cooper, M. A., Addison, E T, Alvarez, R., Coral, M.,
Graham, R. H., Hayward, A. B., Howe, S., Martinez,
], Naar, J., Pefas, R., Pulham, A. J., & Taboada, A.
(1995). Basin development and tectonic history
of the Llanos Basin, Eastern Cordillera and Mag-
dalena Valley, Colombia. American Association of
Petroleumn Geologists, Bulletin, 79 (10), 1421-1443.
https://doi.org/10.1306/7834D9F4-1721-11D7-
8645000102C1865D

Corrigan, H. T. (1967). The geology of the Upper Magda-
lena Basin. In ACGGP, Geological fieldtrips, Colombia
1959-1978 (pp. 221-251). Reprinted by Geotec, 1992,
Bogota.

Cossio, U., Rodriguez, G., & Rodriguez, M. (1995). Geo-
logia de la plancha 283, Purificacién. Escala 1:100.000.
Bogotd: Ingeominas.

De Freitas, M. G. (2001). Exploring for subthrust traps
in a transpressional setting: A review of unsuccessful
results and strategies for improvement in the Upper
Magdalena Valley of Colombia. AAPG Hedberg Con-
ference (Mendoza), extended abstract.

De Freitas, M. G., & Vallejo, J. (2000). Condicionantes es-
tructurales y estratigraficos en el yacimiento terciario
de rio Ceibas, cuenca alto Magdalena, Colombia. In
Memorias del 7.° Simposio Bolivariano de Exploracion
Petrolera en Cuencas Subandinas (Caracas) (pp. 207-
217).

De Freitas, M. G., Vidal, G., & Mantilla, M. (2006). Struc-
tural evolution and hydrocarbon entrapment in the
Balcon field area, Upper Magdalena Valley, Colom-
bia. In Actas del 9.° Simposio Bolivariano de Explora-
cion en Cuencas Subandinas (Bogota) (pp. 253-275).
Asociacion Colombiana de Gedlogos y Geofisicos del
Petroéleo.

Duarte, E., Cardona, A., Lopera, S., Valencia, V., & Es-
tupifian, H. (2018). Provenance and diagenesis from
two stratigraphic sections of the Lower Cretaceous
Caballos Formation in the Upper Magdalena Valley:
Geological and reservoir quality implications. Cien-
cia, Tecnologia y Futuro, 8 (1), 5-29.

Ekstrom, M. P, Dahan, C. A., Chen, M. Y., Lloyd, P. M.,
& Rossi, D. J. (1987). Formation imaging with mi-
croelectrical scanning arrays. The Log Analyst, 28,
294-306.

Fisher, N. 1., Lewis, T. L., & Embleton, B. J. (1987). Statis-
tical analysis of spherical data. Cambridge: Cambridge
University Press.

George, R. P, Pindell, J. L., & Cristancho, J. (1997). Eo-
cene paleostructure of Colombia and implications for
history of generation and migration of hydrocarbons.
Exploracion petrolera en las cuencas subandinas. In
Memorias del 6.° Simposio Bolivariano (Bogotd) (t. II,
pp- 133-140). Asociacion Colombiana de Gedlogos
and Geofisicos del Petrdleo.

Gomez, E., Jordan, T. E., Allmendinger, R. W., Hegar-
ty, K., Kelley, S., & Heizler, M. (2003). Controls
on architecture of the Late Cretaceous to Cenozo-
ic Southern Middle Magdalena Valley Basin, Co-

SERVICIO GEOLOGICO COLOMBIANO 47


https://doi.org/10.1016/0895-9811(88)90019-3
https://doi.org/10.1016/0895-9811(88)90019-3
https://doi.org/10.1130/0016-7606(1965)76[567:STTECO]2.0.CO;2
https://doi.org/10.1130/0016-7606(1965)76[567:STTECO]2.0.CO;2
https://doi.org/10.1130/0016-7606(1965)76[567:STTECO]2.0.CO;2
https://doi.org/10.1306/7834D9F4-1721-11D7-8645000102C1865D
https://doi.org/10.1306/7834D9F4-1721-11D7-8645000102C1865D

48

Rossello / Saavedra

lombia. GSA Bulletin, 115 (2), 131-147. https://doi.
0rg/10.1130/0016-7606(2003)115<0131:COAOT-
L>2.0.CO;2

Guerrero, J. (2002). Proposal on the classification of sys-
tems tracts: Application to the allostratigraphy and
sequence stratigraphy of the Cretaceous Colombian
Basin. Part 2: Barremian to Maastrichtian. Geologia
Colombiana, 27, 27-49.

Hennings, P, Olson, J., & Thomson, L. (2000). Combin-
ing outcrop data and three dimensional structural
models to characterize fracture reservoirs: An ex-
ample from Wyoming. AAPG Bulletin, 84 (6), 830-
849. https://doi.org/10.1306/A967340A-1738-11D7-
8645000102C1865D

Higuera, D. A. (2012). Modelo petrofisico integrado del
Grupo Guadalupe, aplicado al campo Matachin Norte
(M.Sc. thesis). Universidad Nacional de Colombia.

Irving, E. M. (1975). Structural evolution of the north-
ernmost Andes, Colombia. U. S. Geologial Survey
Professional Paper, 846, 1-47. https://doi.org/10.3133/
pp846

Jaimes, E., & De Freitas, M. G. (2006). An Albian-Ceno-
manian unconformity in the Northern Andes: Ev-
idence and tectonic significance. Journal of South
American Earth Sciences, 21 (4), 466-492. https://doi.
org/10.1016/j.jsames.2006.07.011

Jamison, W. (1997). Quantitative evaluation of frac-
tures on Monkshood Anticline, a detachment fold
in the foothills of Western Canada. AAPG Bulle-
tin, 81 (7), 830-849. https://doi.org/10.1306/522B-
49FB-1727-11D7-8645000102C1865D

Klimczak, C., Schultz, R. A., Parashar, R., & Reeves, D. M.
(2009). Cubic law with aperture-length correlation:
Implications for network scale fluid flow. Hydrogeol-
ogy Journal, 18 (4), 851-862. https://doi.org/10.1007/
$10040-009-0572-6

Kroonenberg, S. B., & Diederix, H. (1982). Geology of the
uppermost Magdalena Valley. In Geotec, Geological
field trips: Colombia, 1980-1989 (pp. 73-89). Bogota:
Asociaciéon Colombiana de Gedlogos and Geofisicos
del Petroleo.

Kubik, W., & Lowry, P. (1993). Fracture identification and
characterization using Cores, FMS, CAST, and Bore-
hole Camera: Devonian shale, Pike County, Kentucky.
Paper SPE 25897 presented at the 1993 SPE Rocky

BOLETIN GEOLOGICO 46

Mountain Regional/Low Permeability Reservoirs
Symposium, Denver, CO, 12-14 April.

Laongsakul, P, & Diirrast, H. (2011). Characterization
of reservoir fractures using conventional geophysical
logging. Songklanakarin Journal of Science and Tech-
nology, 33 (2), 237-246.

Mojica, J., & Franco, R. (1990). Estructura y evolucién
tectonica del valle medio y superior del Magdalena,
Colombia. Geologia Colombiana, 17, 41-64.

Montes, C., Hatcher, R., & Restrepo, P. (2005). Tecton-
ic reconstruction of the Northern Andean blocks:
Oblique convergence and rotations derived from the
kinematics of the Piedras-Girardot area, Colombia.
Tectonophysics, (1-4), 399, 221-250. https://doi.org/
10.1016/j.tecto.2004.12.024

Mora, A., Mantilla, M., & De Freitas, M. G. (2010). Creta-
ceous paleogeography and sedimentation in the Up-
per Magdalena and Putumayo Basins, Southwestern
Colombia. Search and Discovery Article, 50246.

Nelson, R. A. (1985). Geologic analysis of naturally fractu-
red reservoirs. Houston: Gulf Publishing Co.

Nelson, R. A., & Serra, S. (1995). Vertical and lateral
changes in fracture spacing in several folded carbon-
ate sections and its relation to locating horizontal
wells. Journal of Canadian Petroleum Technology, 34
(6), 51-56. https://doi.org/10.2118/95-06-05

Ortega, O., & Marret, R. (2000). Prediction of ma-
crofracture properties using microfracture infor-
mation: Mesaverde Group Sandstones, San Juan
Basin, New Mexico-Texas. Journal of Structural Geo-
logy, 22 (5), 571-588. https://doi.org/10.1016/S0191-
8141(99)00186-8

Pindell, J., & Tabbutt, K. D. (1995). Mesozoic-Cenozoic
Andean paleogeography and regional controls on hy-
drocarbon systems. In A. J. Tankard, R. Sudrez, & H.
J. Welsink (eds.), Petroleum Basins of South America
(pp- 101-128). American Association of Petroleum
Geologists, Memoir 62.

Rider, M. H. (1986). The geological interpretation of well
logs. New York: John Wiley & Sons, Inc.

Rossello, E. A. (2018). Interpretaciones estructurales di-
namicas a partir del andlisis de ovalizacion (break-
outs) de pozos: aplicaciones a perforaciones en la For-
macién Vaca Muerta (cuenca neuquina, Argentina).


https://doi.org/10.1130/0016-7606(2003)115<0131:COAOTL>2.0.CO;2
https://doi.org/10.1130/0016-7606(2003)115<0131:COAOTL>2.0.CO;2
https://doi.org/10.1130/0016-7606(2003)115<0131:COAOTL>2.0.CO;2
https://doi.org/10.1306/A967340A-1738-11D7-8645000102C1865D
https://doi.org/10.1306/A967340A-1738-11D7-8645000102C1865D
https://doi.org/10.3133/pp846
https://doi.org/10.3133/pp846
https://doi.org/10.1016/j.jsames.2006.07.011
https://doi.org/10.1016/j.jsames.2006.07.011
https://doi.org/10.1306/522B49FB-1727-11D7-8645000102C1865D
https://doi.org/10.1306/522B49FB-1727-11D7-8645000102C1865D
https://doi.org/10.1007/s10040-009-0572-6
https://doi.org/10.1007/s10040-009-0572-6
https://doi.org/10.1016/j.tecto.2004.12.024
https://doi.org/10.1016/j.tecto.2004.12.024
https://doi.org/10.2118/95-06-05
https://doi.org/10.1016/S0191-8141(99)00186-8
https://doi.org/10.1016/S0191-8141(99)00186-8

Contribution of bedding to the petrophysical characterization of naturally fractured reservoirs

Revista de la Asociacion Geolégica Argentina, 75 (2),
252-264.

Saavedra, J. L. (2013). Geometria y evolucién cinemdtica
del sector que separa los campos Matachin Norte y Ma-
tachin Sur, bloque Espinal-valle superior del Magdale-
na, Colombia (M.Sc. thesis). Universidad Nacional de
Colombia.

Sarmiento, L. F. (2001). Mesozoic rifting and Cenozoic
Basin inversion history of the Eastern Cordillera, Co-
lombian Andes: Inferences from tectonic models (Ph. D.
thesis). Vrije Universiteit, Amsterdam.

Sarmiento, L. F.,, & Rangel, A. (2004). Petroleum systems
of the Upper Magdalena Valley, Colombia. Marine
and Petroleum Geology, 21 (3), 373-391. https://doi.
org/10.1016/j.marpetgeo.2003.11.019

Schamel, S. (1991). Middle and Upper Magdalena Basins,
Colombia. In K. T. Biddle (ed.), Active margin basins
(pp. 283-301). American Association of Petroleum
Geologists, Memoir, 52.

Serra, O. (2008). Well logging handbook. Paris: Technip
Editions.

Toro, J., Roure, E, Bordas Le Floch, N., Le Cornec Lance
S., & Sassi, W. (2004). Thermal and kinematic evo-

lution of the Eastern Cordillera fold and thrust belt,
Colombia. In R. Swennen, F. Roure, & J. W. Granath
(eds.), Deformation, fluid flow, and reservoir appraisal
in foreland fold and thrust belts (pp. 79-115). Hedberg
Series, 1. American Association of Petroleum Geol-
ogists.

Trenkamp, R., Kellogg, J. N., Freymueller, J. T., & Mora,
H. P. (2002). Wide plate margin deformation, Sou-
thern Central America and Northwestern South
America, CASA GPS observations. Journal of South
American Earth Sciences, 15 (2), 157-171. https://doi.
0rg/10.1016/S0895-9811(02)00018-4

Van der Wiel, A. M. (1991). Uplift and volcanism of the SE
Colombian Andes in relation to Neogene sedimentation
in the Upper Magdalena Valley (Ph. D. thesis). Univer-
sity of Wageningen.

Villamil, T., Arango, C., & Hay, W. W. (1999). Plate tec-
tonic paleoceanographic hypothesis for Cretaceous
source rocks and cherts of Northern South America.
In E. Barrera, & C. C. Johnson (eds.), Evolution of the
Cretaceous ocean: climate system (Boulder, Colorado),
vol. 332. Geological Society of America. https://doi.
org/10.1130/0-8137-2332-9.191

SERVICIO GEOLOGICO COLOMBIANO 49


https://doi.org/10.1016/j.marpetgeo.2003.11.019
https://doi.org/10.1016/j.marpetgeo.2003.11.019
https://doi.org/10.1016/S0895-9811(02)00018-4
https://doi.org/10.1016/S0895-9811(02)00018-4
https://doi.org/10.1130/0-8137-2332-9.191
https://doi.org/10.1130/0-8137-2332-9.191

Capas muy gruesas de rocas volcano sedimentarias de la Formacién La Quinta. Via Uramita - Sector La Esperanza, serrania de Perija.
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ABSTRACT

This study reports new data on the petrography, total rock chemistry and U-Pb zircon geochronology of volcanic rocks
of the La Quinta Formation that outcrop the western flank of the Perija mountain range and the Cesar and La Guajira
departments. The volcanic rocks consist of basaltic, andesitic, dacitic and rhyolitic lavas, and the volcaniclastic rocks
consist of crystal-vitric and crystal-lithic tuffs and agglomerates of calc-alkaline affinity, formed in a continental margin
arc setting. Geochronological data suggest that the La Quinta Formation was volcanically active for approximately 25
Ma, during which its composition varied from basaltic trachyandesites to rhyolites. U-Pb dating suggests that the vol-
canism began in approximately 191 Ma (Sinemurian age) and continued until approximately 164 Ma, with at least three
periods of increased volcanic activity. The inherited zircons contain Triassic, Permian, Neoproterozoic and Mesopro-
terozoic populations, indicating that this arc was emplaced on rocks of the Chibcha Terrane along the South American
paleomargin and that it is part of the same arc that formed the Jurassic volcanic rocks of the Sierra Nevada de Santa
Marta, Cocinas and San Lucas mountain ranges and the Upper Magdalena Valley.

Keywords: Jurassic; U-Pb geochronology; volcanic rocks; Perija mountain range.

RESUMEN

Este trabajo presenta nuevos resultados de petrografia, quimica de roca total y geocronologia U-Pb en circon de rocas
volcanicas de la Formacion La Quinta que afloran en el flanco occidental de la serrania de Perija, en los departamen-
tos de Cesar y La Guajira. Las rocas volcanicas corresponden a lavas basalticas, andesiticas, daciticas y rioliticas, y las
rocas volcanocldsticas corresponden a tobas cristalo-vitreas, cristalo-liticas y aglomerados de afinidad calcoalcalina,
formadas en un ambiente de arco de margen continental. Los datos geocronoldgicos sugieren que el vulcanismo de la
Formacién La Quinta estuvo activo aproximadamente 25 Ma, intervalo en el que varié su composicion de traquian-
desitas basélticas a riolitas. Las edades U-Pb obtenidas sugieren que el vulcanismo se inicié aproximadamente a 191
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Ma (Sinemuriense) y se extendié hasta aproximadamente 164 Ma, con al menos tres periodos de

mayor actividad volcanica. Los circones heredados presentan poblaciones del Tridsico, Pérmico,

Neoproterozoico y Mesoproterozoico, lo que sugiere que este arco se emplazé en rocas del Terreno

Chibcha a lo largo de la paleomargen Suramericana y que son parte del mismo arco que formo las

rocas volcanicas jurasicas de la Sierra Nevada de Santa Marta, la serrania de Cocinas, la serrania de

San Lucas y el valle superior del Magdalena.

Palabras clave: Jurdsico; geocronologia U-Pb; rocas volcénicas; serrania de Perija.

1. INTRODUCTION

The volcanic rocks of the La Quinta Formation outcrop
at the northern end of the Colombian Cordillera Oriental
[Eastern Ranges] in the Perijdé mountain range, and they
are part of the Jurassic volcanism that outcrops in the
Upper Magdalena Valley in the San Lucas and Sierra Ne-
vada de Santa Marta mountain ranges and in the Upper
Guajira. The ages of these volcanic sequences range from
195 to 164 Ma (Cediel et al., 1980, 1981; Bustamante et
al., 2010; Villagémez, 2010; Leal Mejia, 2011; Zapata et
al., 2016; Rodriguez et al., 2018; Correa et al., 2019; Leal
etal., 2019).

Most authors agree on the model of formation of the
lower-to-middle Jurassic volcanism and plutonism of the
northern Andes, which is considered to be continental
margin arc magmatism. The following variations in the
model and arc development have been proposed: 1) an
arc formed by a single subduction zone located west of the
South American margin, which was formed between 209
and 114 Ma (Spikings et al.,, 2015); 2) a stationary conti-
nental margin arc formed by oblique convergence between
the Farallon plate (an ancient oceanic plate) and the NW
of South America that has been active for at least 40 Ma
(Bustamante et al., 2016); 3) a continental arc and back-arc
comprising Jurassic rock blocks of the Upper Magdalena
Valley, Colombian Cordillera Central [Central Andes],
and San Lucas and Sierra Nevada de Santa Marta moun-
tain ranges (Villagomez et al., 2015; Bayona et al., 2010);
4) an erosive continental margin arc that was active for
~30 Ma exhibiting a compositional migration in a west-
east direction (Rodriguez et al., 2018); and 5) a continental
margin arc that fragmented and scattered along the paleo-
margin after its formation (Bayona et al., 2010; Villagémez
etal., 2015; Zapata et al., 2016; Zuluaga et al., 2015).

BOLETIN GEOLOGICO 46

This study reports new petrography (9), total rock
chemistry (8) and U-Pb zircon geochronology (laser
ablation inductively coupled plasma mass spectrometry
(LA-ICP-MS)) (5) data, which, together with published
geochronology data (Gonzalez et al., 2015a; Gonzalez et
al., 2015b) and with total the rock chemistry of the La
Quinta Formation, supplement the basic information on
this unit and on the volcanism associated with the arc da-
ted to the Lower-Middle Jurassic.

This new information is correlated with other vol-
cano-sedimentary sequences that outcrop in Colombia,
specifies the distribution of arc volcanism and, togeth-
er with the analysis of the inherited zircons in volcanic
rocks, improves our understanding of the basement dis-
tribution on which the arc is founded and of the geolog-
ical evolution of the northern Andean volcanism during
the Jurassic while furthering our knowledge of the Juras-
sic tectonic blocks that were scattered along the paleo-
margin and their distribution, according to Bayona et al.
(2010), Villagémez et al. (2015), Zapata et al. (2016) and
Zuluaga et al. (2015).

2. RecionaL GeoLoaicAL FRAMEWORK

The Perija mountain range, which is located in the nor-
thern Cordillera Oriental [Eastern Ranges], uplifts from
the Cerrejon and Yaya faults on its western edge, culmi-
nating in the Oca fault northward and forming a block
bordered to the west by the Cesar-Rancherias river va-
lley, which is a drainage basin filled with Mesozoic and
Cenozoic sediments covered by recent alluvial deposits
that separates the Perija mountain range from the Sierra
Nevada de Santa Marta block; to the north, the Oca fault
separates the basin from the Cocinas mountain range in
Upper Guajira (Figure 1).



The core of the Perijd mountain range consists of
Precambrian gneissic metamorphic rocks, such as those
observed in the Cachiri river, on the eastern slope of the
mountainous range; the Rio Cachiri Group rests on this
gneiss basement (Pastor Chacon et al., 2013), although
the gneiss basement has not been found on the western
slope of the Perija mountain range (Miller, 1960 and Fo-
rero, 1970). In the northern sector, the Perija mountain
range is essentially composed of Jurassic and Cretaceous
units that cover Paleozoic units. The oldest rocks are
Cambro-Ordovician metamorphic rocks and Devonian,
Carboniferous and Permian sedimentary rocks (Forero,
1970; Pastor Chacon et al., 2013). On the western slope,
the oldest unit of the Perija mountain range contains De-
vonian sedimentites consisting of argillites, sandstone
siltstones and limestones (Weisbord, 1926; Trumpy, 1943;
Miller, 1960; Forero, 1970 and Pastor Chacon et al., 2013).

The Jurassic volcano-sedimentary sequences of the
La Quinta Formation rest on Paleozoic outcrops of the
western slope of the Perijd mountain range. These se-
quences consist of red beds of sandstones, siltstones, ar-
gillites, conglomerates, subordinate lavas and subaerial
pyroclastic rocks, where the former are similar to those
exposed on the eastern slope of Sierra Nevada de Santa
Marta, where abundant Jurassic volcanic rocks outcrop
(Tschanz et al., 1969).

Cretaceous sedimentary sequences appear on both
banks of the Cesar-Rancherias valley (Molino Formation,
Cogollo Group and La Luna and Portales formations).
These sequences rest on the La Quinta Formation and
Jurassic Vulcanites of the Sierra Nevada de Santa Marta
(SNSM). Similarly, Paleocene-to-Miocene sedimentary
sequences, such as the Cerrejon Formation, rest on the
Cretaceous units.

3. History oF LA QuinTa FoRMATION

The La Quinta Formation consists of red sediments that
stratigraphically lie above Paleozoic units and below Me-
sozoic units. This unit was described by Kundig (1938)
in the state of Tachira on the Seboruco-La Grita road
near the La Quinta hamlet in Venezuela. The sequence,
towards the base, is made up of compact dark red con-
glomerates with well-cemented rims and with sandstone
and red clay intercalations.

Volcanism of the La Quinta Formation in the Perijd mountain range

In Colombia, Miller (1960) coined the term La Quin-
ta Formation to refer to the likely Jurassic sediments that
are found on the western slope of the Perija mountain
range, on the western slope of the Rancheria and Cesar
rivers, and on the Majuyura Ridge (Oca fault) at the nor-
thern end of the Perija mountain range.

Radelli (1962) continues using the term La Quinta
Formation coined by Miller (1960), considering the strati-
graphic correspondence with the La Quinta Formation of
the Venezuelan authors, the sedimentation environment
and the presence of volcanic material. Radelli (1962) des-
cribes the sequence as a predominantly detrital succes-
sion, albeit noting the presence of volcanic material. This
author distinguishes the following facies: a) conglomera-
tes with volcanic pebbles, which form the basement; b)
acidic volcanic rocks associated with sandstones; and ¢)
the fine-grained red sandstones that make up most of the
La Quinta Formation, with interbedded tuffs and with
sandstones at the basement of the formation, together
with andesitic lavas, where there are conformities and
unconformities between the sediments described above.

Forero (1972) surveyed a stratigraphic column of the
La Quinta Formation in Manaure, Cesar Department
(Colombia), and identified the following five sets of roc-
ks from bottom to top: a) conglomerates, red sandstones
and volcanic rocks; b) red sandstones and lutites; ¢) red
sandstones with tuff intercalations; d) conglomerate with
volcanic pebbles; and e) rhyolitic tuffs.

Hernandez (2003) describes the sequence of the La
Quinta Formation in the Perija mountain range east of
the towns of La Jagua de Ibirico in the sector of La Vic-
toria de San Isidro and southeast of Santa Isabel, which
shows a succession along the western flank of the moun-
tain range. Arias and Morales (1999) report that this unit
outcrops near the municipality of Manaure and continues
south to the San Antonio gorge, with a thickness ranging
from 2,700 to 3,000 m, whereas its thickness markedly
decreases in La Jagua de Ibirico due to local reverse faults
that affected the unit through tectonic uplift in the Mio-
cene during the Andean orogeny.

Geoestudios (2006) describes the La Quinta Forma-
tion as a sequence consisting of purple-red, aphanitic ash
tuffs and welded ash-flow tuffs with pseudolamination,
together with slightly calcareous mudstones, conglome-
rate sandstones and matrix-supported conglomerates,
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with local interbedding of reddish mudstones and arkosic
sandstones with cross-bedding.

Gonzalez et al. (2015 a and b) describe volcanic and
pyroclastic rocks throughout the sequence of the La
Quinta Formation, consisting of basalts, andesites, da-
cites, rhyolites and calc-alkaline subalkaline pyroclastic
rocks, formed in a continental volcanic arc setting and
with Lower to Middle Jurassic U-Pb ages.

3. MeTHODOLOGY

Regional sampling was performed from the volcanic roc-
ks of the La Quinta Formation in the Perija mountain
range and the Cesar and La Guajira departments for this
study. In this sampling, sixteen rocks were taken, with
eleven additional samples for zircon extraction; fifteen
new thin sections were prepared, total rock chemical
analysis was performed on eight rocks, and six samples
were dated by zircon U-Pb LA-ICP-MS.

3.1 Petrography

Initially, petrographic analyses were performed from the
mapping projects of the Servicio Geolégico Colombiano;
previously known as Ingeominas. In the present study,
rock samples were selected for petrography from a larger
number of samples collected in field work. The selection
criteria used in this study were undisturbed rocks with
defined spatial distribution representative of the volca-
nic rocks that make up the La Quinta Formation. Fifteen
new samples were sent to the Thin Section Preparation
Laboratory of the Servicio Geoldgico Colombiano, Bo-
gota headquarters. Once the thin sections were prepared,
they were analyzed by the authors at the Petrography
Laboratory of the Servicio Geoldgico Colombiano in
Medellin, using SGC standards in the analysis with Leitz
and Olympus petrographic microscopes and classifying
the samples from 300 counting points, according to the
quartz, alkali feldspar, plagioclase, feldspathoid (QAPF)
diagrams by Streckeisen et al. (1978) and following the
recommendations of Le Maitre et al. (2002).

3.2 Total rock chemical analysis

Eight fresh rocks were chosen, taking into account the
previous petrographic analysis, which was followed by to-
tal rock chemical analysis at the Analytical Geochemistry
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Laboratory of the Servicio Geoldgico Colombiano, Bogo-
ta headquarters. The major oxides and minor elements
were analyzed with a Panalytical Axios Mineral X-ray
fluorescence spectrometer; the major oxides were quan-
tified using samples fused with lithium metaborate and
lithium tetraborate, whereas the minor elements were
quantified using pressed samples. The trace elements
were analyzed using a Perkin Elmer Nexion inductively
coupled plasma mass spectrometer (ICP-MS). The fin-
dings of Gonzalez et al. (2015 a, b) were compared with
the results from the present study since both were based
on samples collected from the same region.

Petrographic and geochemical diagrams were prepared
using the GCDKit software by Janousek et al. (2006).

3.3 U-Pb geochronology

Eleven samples were chosen for zircon separation after
petrographic and chemical analysis of the total rock. Of
these samples, from only six samples of lava and pyro-
clastic volcanic rocks, enough zircons were obtained
for LA-ICP-MS U-Pb zircon dating. The rock samples
were crushed, pulverized and sieved following the sep-
aration procedure of Castaflo et al. (2018) and analyzed
by LA-ICP-MS according to the procedure described by
Peiia et al. (2018). Most zircons were concentrated at the
Chemistry Laboratory of Geological Surveys, Medellin
headquarters, using hydrodynamic and magnetic sepa-
ration and others were concentrated in the field using a
gold pan. The zircons were selected manually using an
Olympus stereo microscope at the Petrography Labora-
tory, Medellin headquarters. Cathodoluminescence (CL)
images of the zircon grain mounts were acquired under a
Zeiss scanning electron microscope (SEM) with a GatCL
miniCL detector to observe the internal structure of the
selected grains.

The analyses were performed in a Photon Machines
laser ablation system with a 193-nm excimer laser cou-
pled to an Element 2 mass spectrometer. The isotopes
used for manual integration were U, **Pb and **Pb.
Plesovice zircon (Slama et al., 2008), FC-1 (Coyner et al.,
2004), Zircon 91500 (Wiedenbeck et al., 1995; Wieden-
beck et al., 2004) and Mount Dromedary (Renne et al.,
1998) were used as reference standards. The points an-
alyzed in the zircons were 20 microns in diameter. Data
reduction was performed using the Iolite v2.5° software



Volcanism of the La Quinta Formation in the Perijd mountain range

LEGEND

Samples

Y%  U-Pb (This work)
Gonzélez et al, 2015

1720000

*
@ Geochemistry
[ |

Petrography

Faults
""""""" Blind fault

———- Inferred sinistral strike-slip fault A

1700000

------ Inferred fault
+—+—*Reverse or thrust fault

—-—- Blind reverse or thrust fault

-2+--4-1 nferred reverse or thrust fault

1680000

VENEZUELA

A
175,541

~~~~~~~~~~~~~~ Blind normal fault

------ Inferred normal fault

Lineament

R\

1660000

5 Las
Aﬂyuan/b/?o e "/1‘4]

Go\efoﬁ

>
1646000

ngruuivu 1
|
1620000

e s
I
% |
i
7 /
"/
\ A o
\ ) 8
/ TS
e ©
3
Nomenclature 1:100.000
- GAC o
_ Pal p— > = " S
= A/ 051 20 3 40 2
\ / 1 Km =
1020000 1040000 1060000 1080000 1100000 1120000 1146000 1166000 1180000
Geological Units Jurassic rocks
- Sierra Nevada de Santa Marta Devonian sediments
|:| Quaternary and alluvial deposits (SNSM) volcanic group (Cachiri group)
|:| Miocene and Pliocene sediments - Central Belt of batholiths
) ) 4 : Precambrian rocks
Paleogene intrusives (Santa Marta - Atanquez Batholith

I

batholith and others)

Cretaceous sedimentary units (Molino. Fm,
Cogollo group, La Luna. Fm and Portales. Fm)

|:| Southeastern Belt of batholiths |:| Buritaca and Los Muchachitos gneiss

Perija volcanic rocks - Los Mangos granulite

- La Quinta Formation
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dating

Source: Gonzalez et al. (2015 a, b); Invemar et al. (2007)
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in IGORPro 6.3.6.4° (Paton et al., 2010; Hellstrom et al.,
2008). Common lead correction was performed using the
evolution model according to Stacey and Kramers (1975).
The final results corresponded to the mean of the data
that fell within two standard deviations.

The ages were determined by the youngest results in
each sample (assuming that this group of zircons crys-
tallized during the same magmatic episode) because this
provides the best estimate of the rapid crystallization of
pyroclastic or volcanic material. The analysis was per-
formed sample by sample when the youngest data co-
rresponded to one or more populations by considering
probability density plots and zircon by zircon when more
than one population was identified by analyzing the
ablation sites and the internal structure of each zircon,
initially separating the ablations into cores and rims and
then grouping them. This method was used to separate
the populations of xenocrystals and inherited zircon co-
res. In the populations that defined the crystallization age
and suggested the presence of antecrystals, the zircons
were compared. Whether the ablation sites corresponded
to cores or rims was analyzed, and the age of the entire
population was calculated, which could define the crysta-
llization age; additionally, the weighted average age of the
antecrystals and the weighted average age of the younger
zircons was calculated, which likely defined the crystalli-
zation age of the rock. The findings were compared with
the crystallization episodes of the arc in both the plutonic
and volcanic rocks (Rodriguez et al., 2018; Rodriguez et
al., 2019b; Correa et al., 2019).

Table 1. Modal classifications in percentages for volcanic rocks of the La Quinta Formation

The »7Pb/**Pb ratios, ages and errors were calculated
according to Petrus and Kamber (2012). The concentra-
tions of U and Th were calculated according to Paton et
al. (2010) using an external standard zircon. The ages and
the geochronology plots were calculated and drawn, res-
pectively, using the add-in program Isoplot v4.15 (Lud-
wig, 2012). The graphical representation in the article is a
single weighted average age diagram showing the zircons
that indicate the age of the crystals and the age of crysta-
llization, albeit with the age calculated separately in the
program.

4. ResuLts

4.2 Petrography

The La Quinta Formation, located in the Perija mountain
range and the Cesar and La Guajira departments, prima-
rily consists of conglomerates, conglomeratic sandstones
and reddish and subordinately brown, gray and greenish
gray sandstones, usually in thick-to-very-thick wavy la-
yers, some of which include cross-bedding.

Less frequently, violet rhyolitic, dacitic, andesitic and
basaltic lavas are identified, as well as thick interbedded
layers of crystal-vitric and crystal-lithic tuffs and agglo-
merates with ash matrix and lapilli. The volcanic rocks
of this study are violet. The petrographic results are sum-
marized in Figure 2 and Table 1.

Basalts. The basalts have a fluid trachytic, porphyritic
texture, and some of the basalts show irregular zeoli-
te-filled amygdules, epidote and epidote and quartz. The

IGM w N Qz PL Fsp Cpx oL Hbl Bt Op Ap Zrn Ep Matrix FR  Other Classification
901373 1124017 1660152 16 12.1 10 15 19 0.4 0.8 29.2 30 Vitreous tuff
901609 1148285 1701812 3.6 15.8 0.8 7.1 2 0.8 69.9 Dacite
901377 1148433 1696644 1.4 21 0.7 1 tr 1 71.9 3 Andesite
901631 1123566 1659592 33 20.8 2.1 2.1 41.7 Dacite
901624 1156113 1709417 225 5.3 8.6 tr 63.6 Phenoandesite
901625 1116457 1652853 57.6 1 13 40.1 Basalt
901382 1116236 1653658 45.6 16.2 38.2 Olivine basalt
901437 1144105 1681005 0.1 79.9 8.4 11.6 31 Trachytic basalt
901623 1147831 1694625 1.2 8.4 2.1 0.5 0.6 2.4 Tr Tr 324 506 1.8 Lithic tuff

Qz: quartz, Pl: plagioclase, Fsp: feldspar, Cpx: clinopyroxene, Ol: olivine, Hbl: hornblende, Bt: biotite, Op: opaque minerals, Ap: apatite, Zrn: zircon,
Ep: epidote, FR: lithic fragments, tr: traces. Coordinates in Magna Sirgas, Bogotd
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Figure 2. Macroscopic observations of lavas and tuffs of the La Quinta Formation
A) 901373-Tuff. B) 901377-Tuff. C) 901609-Dacite. E) 901624-Phenoandesite

phenocrysts are mainly skeletal olivine (0.1-16%) inside
a trachytic matrix consisting of tabular plagioclase eu-
hedral microcrystals (45.6%-79.9%), glass and interser-
tal opaque minerals (hematite 1.3%-11%), and some of
the rocks contain clinopyroxene (0%-8.4%). The skeletal
olivine phenocrysts are euhedral to subhedral, with sizes
ranging from 700 un to 3 mm and with irregular fractu-
res marked by opaque minerals altered to hematite, and
are completely replaced by serpentine and epidote inside
the crystals. The accessory minerals are microcrystals of
opaque minerals (hematite). The alteration minerals are
serpentine and epidote from olivine; the plagioclase can
be dusted due to an alteration to saussurite, and the glass,
in some rocks, is altered to epidote and sericite (Figure
3A and B).

Rhyolites and dacites. Rhyolites and dacites are rocks
with microporphyritic, porphyritic and sometimes se-
riate textures. These rocks consist of euhedral microphe-

nocrysts to phenocrysts of quartz (6.6%-38%), plagio-
clase (12%-45%), sanidine (0%-10%) and may contain
hornblende. The phenocrysts are dispersed in a matrix
ranging from hyalocrystalline to fluidal microlithic; the
matrix can be devitrified and altered to secondary serici-
te and epidote aggregates. The accessory rocks are ochre
hematite, which accounts for the color of the rocks, apa-
tite and zircon. The quartz can be euhedral-to-subhedral
bipyramidal, with matrix corrosion bays and uneven in-
ternal matrix droplets. The plagioclase ranges from 3 to
0.1 mm and is found in euhedral crystals, with zonation.
The alteration minerals are sericite and clay in plagioclase
and feldspar and chlorite in amphiboles.

Pyroclastic rocks. The rocks correspond to red-to-vio-
let, and less frequently greenish-gray, tuffs and volcanic
agglomerates and consist of lithic fragments of crystals
and altered glass.
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Figure 3. Microscopic observations of lavas and tuffs of the La Quinta Formation

A, B) Samples IGM 901382 and IGM 901625: basalts consisting of skeletal olivine (Ol) phenocrysts suspended in a trachytic plagioclase matrix
(M). C) Sample IGM-901437: basaltic andesite with clinopyroxene (Cpx) phenocrysts suspended in a trachytic plagioclase matrix (M). D) Sample
IGM 901624: andesite, seriate plagioclase (PI) phenocrysts and skeletal hornblende (Hbl) suspended in a vitreous matrix (M). E) Sample IGM
901609: andesite with plagioclase (P1) phenocrysts and quartz in a microlithic matrix (M). F) Sample IGM 901373: crystalline vitreous tuff with
quartz (Qtz) and feldspar (Fsp) crystals suspended in a vitreous matrix (M)
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The tuffs consist of volcanic lithic fragments of an-
desites and basalts with porphyritic textures and vitreous,
trachytic, fluidal microlithic and devitrified matrix, with
plagioclase phenocrysts and, less frequently, with skeletal
mafic minerals replaced by opaque minerals and epidote,
with sizes ranging from 300 microns to 6 mm (ash and la-
pilli). The suspended and scattered fragments range from
angled and rounded to amorphous. Some crystal frag-
ments of quartz, plagioclase, sanidine, hornblende and
biotite range from 0.2 to 1.8 mm. The crystals and crystal
fragments are anhedral to euhedral. The quartz can be
bipyramidal and have corroded rims, with corrosion bays
and paste or devitrified glass inclusions. The plagioclase
and sanidine crystals are tabular euhedral and are cove-
red with their alteration to kaolin; the hornblende and the
biotite usually occur as skeletal crystals completely repla-
ced by opaque minerals. The matrix consists of devitri-
fied glass and fragments of quartz crystals and feldspars
smaller than 80 microns, with widespread apatite, zircon
and opaque minerals as accessory minerals (Figure 3F).

Table 2. Results for major oxides in lavas and pyroclastic rocks of the La Quinta Formation

Volcanism of the La Quinta Formation in the Perijd mountain range

5. GEOCHEMISTRY

Eight samples of lavas, agglomerates and tuffs were
analyzed. The spatial distribution of the samples is shown
in Figure 1. The contents of the major oxides and trace
and rare-earth elements (REE) are presented in Tables 2
and 3.

The samples IGM 901610, IGM 901382 and IGM
901624 present 3.41%. 3.60% and 4.30% losses on igni-
tion (LOIs), respectively. The sample IGM 901382, clas-
sified as basalt, shows olivine phenocrysts that are com-
pletely altered to serpentine; the sample IGM 901624,
classified as andesite, shows skeletal hornblende that is
altered to calcite and calcite veinlets, and the sample IGM
901377, classified as andesite, presents hydrothermal
quartz veins. The analysis of the possible rock alterations
from the diagram of Hughes (1972) demonstrated that
the samples IGM 901624, IGM 901623, IGM 901610 and
IGM 901377 show sodic alteration (Figure 4).

IGM 901609 901610 901377 901382 901437 901623 901624 901625

Field No. GOE-1045A GOE-1045B GOE-1048 GOE-1058 GR-6821 GR-6849 GR-6851 GR-6854

W 1148285 1148285 1148433 1116236 1144105 1147831 1156113 1116457

N 1701812 1701812 1696644 1653658 1681005 1694625 1709417 1652853
Si02 60.57 59.55 58.24 51.27 51.29 70.43 55.66 57.75
Tio2 1.05 0.87 1.20 1.36 1.49 0.48 121 1.08
Al203 17.35 16.05 15.28 15.32 15.45 14.39 18.31 15.16
Fe203T 6.09 6.60 7.80 8.70 9.08 3.08 5.41 7.30
MgO 1.83 4.66 2.27 7.32 6.64 1.01 2.64 4.57
Ca0 116 1.29 5.60 5.11 5.83 1.03 3.50 3.47
Na20 6.19 5.59 5.30 4.38 4.53 6.23 7.53 5.21
K20 3.42 1.49 110 2.24 1.82 1.84 0.81 2.64
P205 0.247 0.292 0.465 0.345 0.526 0.146 0.298 0.325
MnO 0.01 0.01 0.01 0.02 0.02 0.00 0.01 0.01
LOI 1.88 3.41 2.53 3.60 2.99 1.27 4.30 2.19

The SiO, values of lavas and pyroclastic rocks range from 51.3% to 70.4%, and the Fe,O,, MgO and CaO values decrease with increasing SiO,
(Table 2); the Na,O values increase with increasing SiO,, and the KO content is variable and dispersed. The TiO, values are higher and lower than
1%, with most values > 1%, except for samples GOE-1045B and IGM- 901623 (GR-6849), with TiO,< 1%. The Al O, content ranges from 14.4%
to 18.3%; Fe,O, ranges from 3.1% to 9.1%; MgO ranges from 1 to 7.3%; CaO ranges from 1% to 5.8%; the alkali (Na,O + K O) content is high,

ranging from 6.3% to 9.6%, with K,0/Na,O ratios < 0.6%
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Table 3. Results for trace elements of volcanic rocks of the La Quinta Formation

IGM 901382 901437 901609 901610 901624 901625 901377 901623
Field No. GOE-1058 GR-6821 GOE-1045A GOE-1045B GR-6851 GR-6854 GOE-1048 GR-6849
cl::s';?fr;“ciactait)n trac?‘a’salgic ite tracﬁa’salgic ite Trachydacite Trachyandesite  Trachyandesite Trachyandesite Trachyandesite Rhyolite
W 1116236 1144105 1148285 1148285 1156113 1116457 1148433 1147831
N 1653658 1681005 1701812 1701812 1709417 1652853 1696644 1694625
Y 27 25 24 26 27 21 22 18
Li 335 65.7 23.12 53.37 31.19 27.60 13.7 10.31
Be 1.70 2.01 1.77 2.37 1.57 1.38 1.79 2.07
Sc 24.82 21.60 20.7 20.5 22.0 215 17.78 5.8
Co 40.8 41.6 27.5
Ga 173 18.3 21 34 20 18 17.9 20
As 2.82 9.14 4.5 5.2 4.7 25 3.88 4.7
In 0.06 0.08 0.05 0.06 0.05 0.06 0.05 0.03
Cs 0.29 0.22 0.80 1.35 0.62 1.12 0.38 0.13
Ba 618 829 1972 352 181 1359 442 241
La 23.6 30.0 40 24 36 30 28.3 112
Ce 55.7 75.1 88 68 76 71 69.9 119
Pr 7.6 11.6 10.6 8.8 9.4 8.5 9.6 14.2
Nd 27.1 46.2 13.0 18.4 14.1 11.7 35.9 5.1
Sm 6.7 9.4 7.12 7.03 6.79 6.70 7.7 6.77
Eu 2.0 2.8 2.01 1.85 121 2.03 2.1 1.58
Gd 6.3 7.9 6.48 6.39 6.41 6.14 6.9 6.64
Tb 0.92 116 0.85 0.88 0.90 0.89 0.89 0.77
Dy 494 5.90 3.93 473 4.77 4.63 4.48 3.58
Ho 1.01 114 0.73 0.87 0.90 0.87 0.83 0.67
Er 2.80 3.18 2.01 2.59 2.57 2.48 2.29 1.93
Tm 0.38 0.40 0.25 0.34 0.34 0.33 0.30 0.25
Yb 2.34 2.60 1.59 2.17 2.10 2.09 1.92 1.61
Lu 0.33 0.38 0.23 0.33 0.31 0.31 0.25 0.23
Tl 0.34 0.46 0.41 0.22 0.10 0.38 0.18 0.26
Pb 6.1 8.0 15.4 7.9 13.7 6.2 9.1 7.2
Th 2.83 2.82 494 3.48 4.65 4.51 3.82 10.18
u 0.73 0.62 1.15 0.67 1.09 1.27 1.05 1.51
Nb 12 14 8 7 9 11 13 8
\ <66 123 131 125 148 167 101 74
Rb 56 44 63 58 16 153 23 41
Sr 439 518 261 232 483 406 335 186

In the total alkali-silica (TAS) diagram (Le Bas et al., fields of basaltic trachyandesites, trachyandesites, trachy-
1986), the lava and pyroclastic rocks are located in the  dacites and rhyolites, with wide compositional variation
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(Figure 5A). The samples IGM 901382, IGM 901437, IGM
901624, IGM 901625 and IGM 901609 are classified in the
alkaline series, and the samples IGM 901625, IGM 901377
and IGM 901623 are classified in the subalkaline series. The
TAS diagram is similar to that obtained in the model classi-

fication of the rocks in the diagram of Streckeisen (1978). In
the Nb/Y vs. Zr/Ti diagram (Winchester and Floyd, 1977),
the samples of lavas and pyroclastic rocks primarily corres-

pond to the fields of andesites and subalkaline rhyodacites

(Figure 5B). The rocks of the La Quinta Formation are me-

taluminous, and some reach the field of peraluminous roc-
ks (IGM 901609, IGM 901610, IGM 901623), with A/CNK
values ranging from 0.7 to 1.3. The A/NK values range from

1 to 2 (Figure 5C). The rocks show a wide dispersion in the
SiO, vs. K,O diagram and are distributed in the fields of
normal-to-high-K calc-alkaline rocks (Figure 5D).
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Figure 5. Classification diagram of volcanic rocks of the La Quinta Formation; lavas in black and tuffs in red
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diagram (Peccerillo and Taylor, 1976)
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5.1 Trace elements
The behavior of these elements is analyzed considering
the SiO, content of the rocks and the chemical classifi-
cation to determine whether there are relationships be-
tween the patterns of rare-earth elements (REE), trace
elements and SiO, content.

The chondrite-normalized (Nakamura, 1974) REE
diagrams of basaltic trachyandesites show a parallel pa-
ttern, with a negative slope and with a light-REE enrich-
ment of 70 to 100 times. The (La/Yb) ratio ranges from
6.7 to 7.8 and has no Eu anomalies, and the Eu/Eu* ratio
is approximately 1. The patterns of trachyandesites and
trachydacites are subparallel, and these rocks are slightly
more depleted of Tm, Yb and Lu than basaltic trachyan-
desites. The Eu anomaly ranges from 0.56 to 0.97, and the
(La/Yb), ratio ranges from 7.3 to 16.8. The rhyolitic tuff
has a pattern with an even more negative slope and hi-
gher light-REE enrichment, between 300 and 400 times,
and further heavy-REE depletion, with Eu and Ce ano-
malies, indicating plagioclase fractionation and possible
contribution of sedimentary material to the source. In the
rhyolitic tuff, the Eu/Eu* ratio is 0.7, and the (La/Yb)
ratio is 46.6 (Figure 6A, C and E). The higher values of
the (La/Yb), ratio in rhyolite could represent greater con-
tributions from the crust and periods of higher magma
flux and/or thicker crust. Lower values of the (La/Yb),
ratio could indicate greater contributions of mantle ma-
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terials to the magma and periods of lower magmatic flux
(Girardi et al., 2008).

The lavas of the La Quinta Formation, in the normal
mid-ocean ridge basalt (NMORB)-normalized trace ele-
ment diagram (Sun and McDonough, 1989), show ne-
gative Nb and Ti anomalies and positive anomalies and
high values of Cs, Rb, Ba, Th, K and Pb, which suggests
affinity with the continental crust (convergent margins),
where these highly incompatible elements abound. The
high values of Ba and Rb may result from their mobiliza-
tion from fluids that interact with magma in the subduc-
tion zone. All of these features are characteristic of mag-
mas generated in arc settings (Pearce et al., 1984; Pearce,
1996), with gradual depletion of large-ion lithophile
elements (LILE) and enrichment in high-field-strength
elements (HFSE; Figure 6). The basaltic trachyandesitic,
trachyandesitic and dacitic lavas show similar multiele-
ment patterns, with higher Cs, Rb and Ba mobility in tra-
chyandesites and with negative Nb and Ti and positive K
and Pb anomalies. The andesitic pyroclastic rocks have
multielement patterns in trace elements similar to those
of lavas, suggesting that they are cogenetic (Figure 6B and
D). The sample of rhyolitic tuff shows a different pattern,
with more pronounced negative Nb, P and Ti anomalies
(Figure 6F), suggesting at least three magmatic events, as
proposed by Cano et al. (2017).
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Figure 6. Multielement diagrams corresponding to volcanic and pyroclastic rocks of the La Quinta Formation
A, C, E) Chondrite-normalized REE diagrams (Nakamura, 1974). B, D, F) NMORB-normalized multielement diagrams (Sun and McDonough,

1989)

5.2 Tectonic setting discrimination

The presence of basaltic trachyandesites, trachyandesi-
tes, dacites and calc-alkaline rhyolites, together with Nb
and Ti anomalies in the multielement diagrams and ne-
gative slopes in the REE diagrams, suggests that the vol-
canic rocks of the La Quinta Formation were generated
in an arc setting. The lavas and pyroclastic rocks of the
La Quinta Formation, in the Sr/Y vs (La/Yb), diagram
(Condie and Kroner, 2013), are plotted in the field of
continental volcanic arcs, with enrichment in (La/Yb)  as
the rocks become more differentiated (Figure 7). Basaltic
trachyandesites, trachyandesites and rhyolites are grou-
ped separately, and rhyolite is plotted outside the field,
although in other diagrams, such as that of Pearce (2008),
rhyolite falls within the field of arcs.
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rock samples from the La Quinta Formation
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6. GEOCHRONOLOGY

For the geochronological analysis of the volcanic roc-
ks of the La Quinta Formation, six rocks were analyzed
using the U-Pb zircon LA-ICP-MS method. The U-Pb
ages reported by Gonzalez et al. (2015 a, b) were collec-
ted and are outlined in Table 4, and the corresponding
spatial locations are shown in Figure 1. The reported ages
are calculated with the Pb*%/U*® ratio. In general, all the
ages show dispersion in each of the dated samples. This
phenomenon is well-documented in igneous systems,
due to the long crystallization of zircon within the mag-
matic system (Schoene et al., 2015) or to Pb loss and the
presence of older inherited zircons in the magma (ante-
crystals). The crystallization age of each rock is calcula-

ted considering the presence or absence of populations
of ages according to the probability density diagram and
the observable distribution in the Tera-Wasserburg dia-
gram, which could suggest populations of antecrystals.
For this purpose, cathodoluminescence images and the
age of each zircon are analyzed, as well as the locations
of zircon ablations, for which the younger zircon popu-
lations are separated from the zircon populations of the
magmatic system that could correspond to the ages of the
antecrystals. Three ages are determined in the rocks that
show high dispersion of ages according to the Pb**/U*
ratio: the age of the entire population, the age of the likely
antecrystals and the youngest age of likely crystallization.
These ages are analyzed in the discussion.

Table 4. Summary of U-Pb ages determined by LA-ICP-MS in zircon samples of the La Quinta Formation

Sample No. W Longitude N Latitude Rock Age (Ma) MSWD Inheritances Reference
1,902.2+70(n=1); 1,138-1,191 (n=2);
GOE-1045a 1148285 1701812 Trachydacite ~ 188.32.2 39 NP LR iqifgél_gssé;z:l_is.'z%i%(—gié); Present study
j o132 ;
1.974.3;1,369-1.311 (n=3); 1,283-
GR-6849 1147831 1694625 Tuffe 179.5+2.1 43 5399 ((?1 Zi)){ 1076-926.2 (n>3) 992- Present study
556-551(n=3); 287.7 48 (n=1)
1,913.8+39.7 (n=1); 1,361.1+31 (n=1),
GR-6851 1156113 1709417 Trachyandesite ~ 188.3+2.5 6.6 892.6-996.2 (n=2); 625.4-605.2 (n=2); Present study
226.2-203.5 (n=4)
GOE-1057 1124017 1660152 Vitreous tuff* 175.5+1.4 53 1,263.2+33 (n=1); 956.2-969.5 (n=2). Present study
1,515+55.6 (n=1); 1,465.7 +55 (n=1);
1,543-1,322 (n=2): 1,278.8-1,202
GZ-6903 1123566 1659592 Dacite* 174.8+1.2 3.4 (n=5);1,167-1,153 (n=5); 1,087-1,004 Present study
(n=7); 993-906 (n=19); 882.8-852
(n=4); 269-252 (n=4)
1,615+40 (n=1); 1,578-1,537 (n=3);
GR-6854 1116457 1652853 Trachyandesite — 18I 8L ((?;%)) T ((?1235)) Present study
1,072-1,013 (n=6)
U-Pb ages in previous studies
DQB-0058r 1100929 1590508 Tuff 181+1.1 12 Gonzélez et al., 2015a
DQB-0060r 1101194 1589892 Rhyolite 180+1 31 Gonzélez et al., 2015a
DQB-0061r 1100988 1589202 Rhyolite 177 +1 1.7 Gonzélez et al., 2015a
ABE-0075ra 1100882 1585343 Dacite 181+4 4.5 Gonzalez et al.,, 2015a

* Petrographic classification.

The sample GOE-1045A corresponds to a dacite ac-
cording to the petrographic classification and to a tra-
chydacite according to the chemical classification. There
are two populations of zircons in this rock: one of col-
orless, flattened and elongated prismatic zircons (stems),
with sizes ranging from 80 to 110 microns in length, and
a second population of oval zircons, with sizes ranging
from 20 to 100 microns. In cathodoluminescence (CL)
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images, the prismatic crystals show the typical oscillatory
zonation of igneous zircons (Figure 8E and F), and the
oval zircons correspond to inherited zircons (cathodolu-
minescence supplementary files). A total of 52 ablations
were performed in 54 zircons (supplementary table), dis-
regarding discordances greater than 10% in the data inter-
pretation. The age of the entire set of zircons is calculated
as 188.3+2.2, with a mean square weighted deviation
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Figure 8. Results of U-Pb zircon dating of the sample GOE-1045A

A) Tera-Wasserburg Concordia diagram. B) Mean age. C) Mean ages of the “populations” and tables of the ages of each zircon. Black vertical bars
correspond to values rejected by the Isoplot software in the mean age calculations. The age of the likely antecrystals is indicated in blue, and the
crystallization age of the younger rock zircons is indicated in red. D) Cathodoluminescence image of older zircons in the population, indicating
crystallization. E) Cathodoluminescence image of younger zircons
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(MSWD)=3.9 from twenty data points (Figure 8A and
B), which is interpreted as the likely rock crystallization
age. The probability density diagram presents two like-
ly populations with two different ages: the population of
previous zircons of the igneous system (or antecrystals)
present a mean age of 194.4 + 1.8 with MSWD = 0.20
(n=8), and the population of younger zircons present an
mean age of 185.7 + 1.7 with MSWD =1.4 (n=13), corre-
sponding to the Pliensbachian (Figure 8C). A comparison
of the cathodoluminescence images of the oldest and the
youngest zircons yields no differences, which prevented
us from identifying antecrystals (Figure 8D and E). Most
of the ablations in the young and old zircons are applied
to the crystal cores. The Th/U ratio ranges from 0.6 and
1.7. These values are in line with the typical ratios of ig-
neous zircons (Rubatto, 2002), finding inherited zircons
from the Triassic (n=3), Neoproterozoic (n=9), Meso-
proterozoic (n=9) and Paleoproterozoic (n=1).

The sample GR-6851 corresponds to an andesite ac-
cording to the petrographic classification and to a tra-
chyandesite according to the chemical classification. The
zircons of this rock are short, flattened, prismatic and eu-
hedral, showing few stems and needles, with round and
slightly oval ends and with sizes smaller than 100 microns,
and some are fractured. In the cathodoluminescence (CL)
images, the flattened crystals have oscillatory zonation,
and the stems show a parallel pattern typical of igneous
zircons (Figure 9D and E; supplementary file). A total of
48 ablations were performed in 55 zircons (supplemen-
tary table) disregarding discordances greater than 10% in
the data interpretation. The age of the entire set of zircons
is 188.3%2.5, with MSWD=6.6 from twenty-two data
points (Figure 9A and B), which is interpreted as a likely
rock crystallization age. The probability density diagram
presents two probable populations with two different ages:
the population of the previous zircons of the igneous or
anticrystal system present a mean age of 191.6 + 1.7 with
MSWD =2 (n=16), and the population of younger zircons
present an average age of 181.2 + 1.7 with MSWD=14
(n=6), which corresponds to the Pliensbachian (Figure
9C). A comparison of the cathodoluminescence images
of the oldest and youngest zircons yields no differenc-
es, which prevented us from identifying any antecrystals
(Figure 9D and E). Most of the ablations in the young and
old zircons are applied to the crystal cores, and the crystals
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subjected to multiple ablations yield very similar ages for
the rims and cores. The Th/U ratio ranges from 0.58 to 1.6,
which is in line with the typical ratios of igneous zircons
(Rubatto, 2002), demonstrating inherited zircons from the
Triassic (n = 4), Neoproterozoic (n = 4), Mesoproterozoic
(n =2) and Paleoproterozoic (n = 1).

The sample GR-6849 corresponds to a tuff according
to the petrographic classification and to a rhyolite accord-
ing to the chemical classification. The zircons of this rock
correspond to two populations: one of short and stem-like,
inequigranular, prismatic and euhedral crystals and anoth-
er of sparse subrounded zircons of oval shapes. In the cath-
odoluminescence (CL) images, the prismatic crystals show
oscillatory zonation, and some have inherited cores; the
stem-like crystals show the typical parallel arrangement
of igneous zircons. A total of 61 ablations were performed
on 51 zircons (supplementary table), and discordances
greater than 10% were disregarded in the data interpre-
tation. A single weighted average age of 179.5 + 2.1 with
MSWD =4.3 is assessed from 28 data points. This age is
interpreted as the rock crystallization age and corresponds
to the Toarcian (Figure 10A and B). The Th/U ratio ranges
from 0.6 to 1.7, which is in line with the typical ratios of
igneous zircons (Rubatto, 2002), demonstrating inherited
zircons from the Permian (n = 1), Neoproterozoic (n = 11),
Mesoproterozoic (n = 7) and Paleoproterozoic (n = 2).

Sample GZ-6903 corresponds to a dacite according to
the petrographic classification. The zircons of this rock
are part of at least two populations: one of short prismatic
euhedral crystals with a few stem-like equigranular crys-
tals and the other of oval zircons. In the cathodolumi-
nescence (CL) images, the prismatic crystals demonstrate
the oscillatory zonation typical of igneous zircons, and
the oval crystals seem to have metamorphic overgrowths.
A total of 69 ablations were performed in 50 zircons
(supplementary Table), and discordances greater than
10% were disregarded in the data interpretation. A single
weighted average age of 175.2+2.3 with MSWD=1.02 is
calculated from nine data points, which is interpreted as
the rock crystallization age and corresponds to the Aalen-
ian (Figure 10C and D). The Th/U ratio ranges from 0.57
and 1.5, which is in line with the typical ratios of igneous
zircons (Rubatto, 2002), demonstrating inherited zircons
from the Triassic (n=2), Permian (n=2), Neoproterozoic
(n=24) and Mesoproterozoic (n=25).
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Sample GOE-1057 corresponds to a tuff according
to the petrographic classification. The zircons of this
rock are prismatic, short and equigranular, with sizes
ranging from 50 to 100 microns. In the cathodolumines-
cence (CL) images, the zircons that define the age show
oscillatory zonation, and some have complex zonation
(cathodoluminescence supplementary file). A total of 94
ablations were performed in 60 zircons (supplementary
table), disregarding discordances greater than 10% in
the data interpretation. The age of the entire set of zir-
cons is 175.5+ 1.4 with MSWD =5.3, as assessed from 64
data points (Figure 10E and F), which is interpreted as
the likely rock crystallization age. The probability density
diagram shows two likely populations with two different
ages (Figure 10E): the population of previous zircons of
the igneous system or antecrystals yields a mean age of
188.6 £ 1.8 with MSWD =0.51 (n=8), and the population
of younger zircons yields a mean age of 174.8 +1.2 with
MSWD=3.4 (n=56), corresponding to the Aalenian
(Figure 10F). A comparison of the cathodoluminescence
images of the young and old zircons shows that the oldest
ages are found for crystal rims or in fractured crystals, and
some crystals have younger cores (cathodoluminescence
supplementary file, supplementary table). The Th/U ratio
ranges from 0.51 to 2.26, which is in line with the ratios
typical of igneous zircons (Rubatto, 2002), demonstrat-
ing inheritances from the Triassic (n= 1), Neoproterozoic
(n=2) and Mesoproterozoic (n=1).

6.1 Inheritances
To determine the populations of inherited zircons in the
volcanic rocks of the La Quinta Formation, the inheri-

Volcanism of the La Quinta Formation in the Perijd mountain range

tance results of six samples dated using the U-Pb zircon
method are considered (GOE-1045a, GR-6851, GR-6849,
GZ-6903, GOE-1057 and GR-6854); the ages of each sam-
ple are integrated and grouped. Data with discordances >
10% up to 800 Ma and discordances > 5% in ages older
than 800 Ma are disregarded, leaving 112 data points that
meet the condition for analysis.

The inheritances of each sample are shown in the
Concordia diagrams of Figure 11, which includes the
samples that do not meet the concordance criteria. The
populations of inherited zircons in the volcanic rocks
of the La Quinta Formation are shown in Figure 12,
and some zircons characteristic of these populations are
shown in Figure 13. The oldest population dates back to
~1.911 Ma (n= 3), with one concordant data point and
two discordant data points, and two important popula-
tions date back to the Mesoproterozoic, at ~1.549 Ma and
~1.354, with three younger populations of ~1.247 Ma,
~1.153 and ~1.068 Ma. The most representative popula-
tions of the Neoproterozoic are dated between ~983 Ma
and ~871 Ma, with two younger populations between
~618 and ~553 Ma. Four concordant data points, 287.6 £
8.2,269.9 + 10, 258.8+ 10 and 251.9+ 9.4 Ma, are iden-
tified in the Permian. The eight Triassic zircons have a
mean age of 210.3+ 5.8. The Mesoproterozoic popula-
tions have Th/U ratios below and above 0.3, which sug-
gests that the zircons have an igneous and metamorphic
basement. The Neoproterozoic populations have Th/U
ratios > 0.3, which suggests that they are mostly igneous
zircons (Rubatto, 2002). The Permian and Triassic zir-
cons generally have Th/U ratio > 1 and are thus igneous
zircons (Figure 12Q and R and Figure 13A and B).
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Figure 12. U/Pb geochronology of inherited zircons of the La Quinta Formation. Concordia, probability density, weighted average age and Th/U
vs. age diagrams
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Figure 13. Cathodoluminescence images of representative xenocrystals from different populations

A and B) Triassic and Permian igneous xenocrystals with concentric texture. C) Homogeneous luminescent xenocrystals with weak internal
structure. D) Crystals with metamorphic overgrowth rims around inherited cores. E) Inherited cores truncated by concentric and clear growth
rims. E G, H, I) Mesoproterozoic inherited nuclei, in some cases, with Jurassic igneous rims
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7. DiscussioN

7.1 Ages and correlations

The crystallization ages assessed in some samples show
high dispersion in the data, which suggests the presen-
ce of older zircons (antecrystals) or Pb loss. The zircon
structure, shape and texture, which determine the crysta-
llization age, show no differences according to the catho-
doluminescence images for their differentiation.

The Pb**/U>* ages that determine the crystallization
of samples GOE-1045A and GR-6851 range from ~15 Ma
to ~18 Ma. Most of these ages are assessed in zircon cores,
with similar ages for the rims and cores when tested, su-
ggesting that the differences in age do not result from Pb
loss. Thus, these two samples likely contain a population
of antecrystals, and the crystallization age is represented
in the younger population; however, the information is
considered insufficient, and therefore, the crystallization
age of these two rocks is that of the entire population
that meets the selection criteria described above. Sam-
ple GOE-1057 has a population of older ages (nine data
points), which are located on the rims of zircon crystals
and on zircons with internal fracturing, with younger ages
in the cores of some zircons than on the rims, suggesting
Pb loss and the absence of antecrystals at these more re-
mote ages. For this reason, we consider the crystallization
age of this sample to be 174.8 +1.2 Ma with MSWD=3.4
and hence slightly younger than the weighted average age
of the entire population, removing these eight ages from
the calculation.

The data from this study indicate that the volcanism
of the La Quinta Formation, in the Perija mountain ran-
ge, was active from the Lower to the Middle Jurassic. The
ages suggest that the volcanism began in ~191 Ma (sam-
ples GOE-1045A and GR-6851) and continued until at
least ~163 Ma (according to the U-Pb age reported by
Barret et al., 2008 in Venezuela), with at least three likely
periods of volcanic activity: ~188 Ma, ~179-181 Ma and
~173-175 Ma, which correspond to the crystallization
ages of the rocks of the La Quinta Formation (Table 4).
A comparison of the duration and episodes of crystalli-
zation of the volcanic rocks in units correlated with the
La Quinta Formation, and which are part of this arc, such
as the Jurassic vulcanites of the Sierra Nevada de Santa
Marta (Quandt et al., 2018; Rodriguez et al., 2019b), No-
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redan Formation (Correa et al., 2019) and Saldana For-
mation (Rodriguez et al., 2016), shows that the period
of volcanic activity is virtually the same in the different
volcanic units that make up the arc or fall within the
crystallization period of the arc (Table 5). Furthermore,
this period matches the duration of plutonism described
by Rodriguez et al. (2018) and Rodriguez et al. (2020) in
VSM and in SNSM. Although the geochronological data
collected in the La Quinta Formation are not abundant,
the petrographic and chemical composition of the rocks
and the U-Pb ages suggest that the volcanism of the La
Quinta Formation evolved from basic to acidic and from
metaluminous to peraluminous, initially generating lava
flows of basaltic trachyandesites and subsequently trach-
yandesites and dacites and ultimately becoming explosive
and generating rhyolites and rhyolitic pyroclastic rocks in
this region. This volcanism occurred in a subaerial set-
ting, developing hematite, which stained the rocks a red-
dish color. The dates estimated in previous studies using
the U-Pb method on volcanic rocks indicate ages ranging
from 176 to 182 Ma (Gonzalez et al., 2015 a, b) on the
western flank of the Perija mountain range and of 163 + 5
Ma in Venezuela (Dasch, 1982). Barrett et al. (2008) loca-
ted this unit between the Lower and Middle Jurassic, ac-
cording to fossil evidence of Ornithischian Lesothosaurus
sp. and reptile remains (in Nova et al., 2012).

The comparison of the geochronology, geochemistry
and petrography results of this study with those repor-
ted for the Norean Formation of the Santander massif in
the San Lucas mountain range (Ingeominas-UIS, 2006a,
2006¢, 2006d, 2006e; Leal Mejia, 2011; Gonzélez et al.,
2015a, 2015b and Correa Martinez et al., 2019), for the
volcanic units of Sierra Nevada de Santa Marta (Guata-
puri and Corual formations, Caja de Ahorros, La Paila
and Los Clavos ignimbrites, Los Tabanos Triassic spilites,
keratophyric porphyries and rhyodacites and Golero rh-
yolites) (Tschanz et al., 1969a; Maze, 1984; Quandt et al.,
2018, Rodriguez et al., 2019¢), for Ipapure-Cerro de La
Teta rhyodacites in Upper Guajira (Radelli, 1960; Rodri-
guez and Londofio, 2002; Zuluaga et al., 2015) and for the
Saldana Formation and Pitalito vulcanites in the Upper
Magdalena Valley (Rodriguez et al., 2016; Zapata et al.,
2016) shows that all the volcanic rocks of these units are
correlated with the volcanic rocks of the La Quinta For-
mation.
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Table 5. Comparison between the crystallization period of volcanic arc units and periods of increased crystallization, based on U-Pb zircon ages

Lithological unit Activity lapse

Crystallization episodes Source

Saldafna Formation and Pitalito

vulcanites ~190 to ~164 Ma

~190-186 Ma, ~183-178 Ma, ~173-168 Ma

Rodriguez et al. (2016)

Norean Formation ~194 to~175 Ma

~192 Ma, ~185 Ma, ~175 Ma Correa et al. (2019)

Volcanic units of SNSM ~196 to ~165 Ma

~195 Ma, ~186 Ma, ~178-175y ~168 Ma Rodriguez et al. (2019b)

La Quinta Formation ~196 to ~164 Ma

~188 Ma, ~179-181 Ma, ~173-175 Ma Present study

Cerro de La Teta and Ipapure

rhyodacites ~184t0~181

Zuluaga et al. (2015)

The U-Pb zircon geochronology results of the volca-
nic units show similar crystallization periods and geo-
chemical behavior of major and trace elements sugges-
ting that they were formed from the same continental
volcanic arc (Rodriguez et al., 2016; 2018, 2019b, Correa
et al, 2019, Quandt et al., 2018), which was subsequently
dispersed along the paleomargin of northern South Ame-
rica (Bayona et al., 2010; Villagémez et al., 2015; Zapata
etal., 2016; Zuluaga et al., 2015, Rodriguez et al., 2019a).

7.2 Inheritance and basement

The presence of xenocrystals and inherited zircon cores
in the rocks of the La Quinta Formation is most likely
related to the melting of older wall rocks. This process
commonly occurs in magmatic systems. The formation
of antecrystals, which is more debatable and difficult to
determine, was found in some of the rocks analyzed in
this study, which is in line with the crystallization episo-
des of the arc (Table 5).

The ages of the inherited zircons in the volcanic rocks
of the La Quinta Formation match the ages and inheri-
tances described by Ibafiez Mejia et al. (2015) for the Pu-
tumayo orogen. These authors suggest that the inherited
zircons with ages older than 0.9 Ga possibly derived from
metasedimentary rocks of the Mesoproterozoic basement
and were contributed to by an older Cratonic domain. In
our case, the inherited zircons were incorporated into
Jurassic magmas, which produced the La Quinta For-
mation, among others, through melting of the Putumayo
orogen crust. Ages between 1.15 and 1.10 Ga, according
to Ibafiez Mejia et al. (2015), are associated with accretion
of arc edges against the continental margin, triggering an
early metamorphic event, and ages of approximately 0.99
Ga have been interpreted as the Amazonia incorporation
into the core of Rodinia during the collision with the
Baltic (Ibanez Mejia et al., 2015). This would largely exp-
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lain the oldest inheritances of the volcanic arc of 0.9 Ga,
which would be contributed to the arc by the basement
of the Putumayo orogen that belongs to the Chibcha Te-
rrane (Restrepo et al., 2009). This terrane currently spans
across part of the Cordillera Oriental [Eastern Ranges]
and the easternmost section of the Cordillera Central
[Central Andes] and consists of a Neoproterozoic crys-
talline basement (Putumayo orogen), Paleozoic marine
sedimentary sequences and intrusions and volcanic roc-
ks of arcs formed during the Carboniferous-Permian and
the Lower-to-Middle Jurassic. After the formation of the
arcs, the Chibcha Terrane was divided into blocks scatte-
red along the paleomargin of northern South America, as
we currently know it (Rodriguez et al., 2019a).

The ages of 618 and 553 Ma are similar to the in-
heritances described by Rodriguez et al. (2019a) in the
plutons of the Permian arc, which, according to Nova et
al. (2018), possibly correspond to the zircons of units in-
cluded in the Mixteco and Maya blocks of Mexico. The
source of the Triassic igneous xenocrystals is unknown;
most likely, they are related to minor igneous bodies still
unidentified in the Chibcha Terrane and in general ol-
der than plutonic rocks of intrusions dated between the
Triassic and the Lower Jurassic of the Santander massif.

A comparison of the ages of the xenocrystals and
inherited zircon cores of the La Quinta Formation with
other correlated volcanic units suggests that all these vol-
canic units have similar zircon inheritance, which would
indicate that they shared the same preexisting basement,
on which all the arc units were emplaced: the Norean
Formation has zircon inheritances from the Mesoprote-
rozoic (~1400 Ma, n= 1) and from the period between
the Mesoproterozoic and Neoproterozoic (~1.050 and
950 Ma, n= 3) (Correa Martinez et al., 2019); the Sal-
dana Formation has inheritances from the Mesoprote-
rozoic (~1.460, ~1.570 and ~1.630 Ma), Neoproterozoic



(~906 to ~1.060 Ma and ~510 Ma), Permian (~270 Ma)
and Triassic (~223 Ma) (Rodriguez et al., 2016; Zapa-
ta et al., 2016); the Jurassic volcanic rocks of the Sierra
Nevada de Santa Marta have Mesoproterozoic, Neopro-
terozoic, Paleozoic, Permian and Triassic xenocrystals,
as well as ages contemporary with Pan-African orogeny
events during the Devonian (400-650 Ma) (Rodriguez et
al., 2019¢).

7.3 Tectonic model

Different arc models have been proposed for Jurassic
magmatism: Bayona et al. (2010), based on paleomagne-
tic data, consider that blocks moved northward relative to
a point on the craton and formed an oblique-subduction
margin along the South American paleomargin. Villa-
gomez et al. (2015), similar to Bayona et al. (2010), con-
clude that the Jurassic blocks of the Upper Magdalena,
Cordillera Central [Central Andes], San Lucas mountain
range and Sierra Nevada de Santa Marta are allochthons
formed in an arc and in a back-arc and the Jurassic rocks
of the Santander massif are autochthonous and related to
a rift; Spikings et al. (2015) postulate that the westward
shift in Jurassic magmatism over time is due to slab roll-
back and/or trench retreat; Bustamante et al. (2016) and
Quandt et al. (2018) embrace the idea of highly oblique
subduction; the former explain the compositional chan-
ges by reduced sediment melting and long-term source
evolution (proposed by Leal Mejia, 2011); Zapata et al.
(2016) consider the volcanic and plutonic rocks to share
the same arc history and to be related to a fragmented Ju-
rassic magmatic belt; Zuluaga et al. (2015) discuss the re-
lationship between the plutons and Jurassic volcanic roc-
ks of La Guajira and conclude that they were formed in
the same axis, which would imply that there was no back-
arc and that they formed within the arc; Rodriguez et al.
(2018) consider the arc to be represented by volcanic and
plutonic rocks that were formed in the Upper Magdalena
Valley during three high-activity magmatic pulses (from
188 to 186 Ma, from 183 to 178 Ma and from 173 to 168
Ma), that the plutons tended to rejuvenate from west to
east, that the north of the Ibagué Batholith is not part of
this arc and that this batholith was emplaced in an Upper
Jurassic orogen (Blanco Quintero et al., 2014, Rodriguez
et al., 2020). These authors attribute the compositional
changes and the migration of the plutons to erosion of the
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accretionary prism due to the increased water flow from
the subduction slab, consequently decreasing the solidus
temperatures; Rodriguez et al. (2020) propose three mag-
matic arcs for the Jurassic magmatism of the northern
Andes, each one formed at different periods, with their
own chemical and petrographic composition and empla-
ced in different orogens.

The geochemistry and geochronology data presented
here show the correlation between the volcanic units that
make up the different blocks of the northern Andes (Sal-
dana Formation, Pitalito vulcanites, Norean Formation,
SNSM Jurassic volcanic units, La Quinta Formation and
Cerro de La Teta and Ipapure rhyodacites), which sug-
gests that from Ecuador through the Upper Magdalena
Valley to La Guajira, volcanism was generated in a similar
time span of ~30 Ma, from 195 Ma to 164 Ma, and that
the pulses or episodes of peak magmatic activity were
virtually identical in these units and in their plutonic
equivalents, in contrast to an oblique subduction model,
considering multiple arcs.

According to some authors, the Jurassic units corres-
pond to a single arc that evolved from east to the west over
an extended period of time. Based on the above, oblique
subduction is postulated considering the Jurassic pluto-
nism and volcanism data of the Upper Magdalena Valley
(Rodriguez et al., 2016, Zapata et al, 2016; Bustamante
et al., 2016; Rodriguez et al., 2018), San Lucas mountain
range (Leal Mejia, 2011; Correa et al,, 2019), Sierra Ne-
vada de Santa Marta (Tschanz et al., 1969a; Quandt et
al., 2018 y Rodriguez et al., 2019b) and Upper Guajira
(Zuluaga et al., 2015), which show similar composition
and spatial behavior and considerably different chemical
and petrographic composition from the Triassic-Juras-
sic units of the Santander massif (Rodriguez et al., 2017,
2020) and from the north of the Ibagué Batholith.

The analysis of the data of the Upper Magdalena Va-
lley and Sierra Nevada de Santa Marta shows coinciden-
ces when describing the compositional variation in the
plutons of these two blocks (Tschanz et al., 1969; Jarami-
llo and Escovar, 1980; Nufiez et al., 1996), corroborating
published petrographic and geochemical results (Rodri-
guez etal,, 2018 y Rodriguez et al., 2019b). The studies by
Jaramillo and Escovar (1980) and by Nuiiez et al. (1996)
describe eastward macroscopic and compositional chan-
ges in plutons in the Upper Magdalena Valley and show
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that the bodies are more acidic and granitic in the same
direction. Tschanz et al. (1969) separated the plutons of
Sierra Nevada de Santa Marta into two batholith belts,
a central belt and southeastern belt, and they described
their macroscopic differences, stating that the southeas-
tern belt was granitic.

In this context and considering the volume of infor-
mation published, the arc to which the La Quinta Forma-
tion belongs shows eastward compositional and temporal
migration that was most likely caused by erosion of the
trench subduction front as the Farallones plate slid under
the continental paleomargin during the ~30 Ma years of
the duration of the arc. This continental arc is characte-
rized by erosion, with eastward compositional migration
and rejuvenation.

The continental margin, in the northern Andes, has
been an accretion margin of blocks or terranes. Much of
this accretion is represented by the metamorphic sequen-
ces of the Cordillera Central [Central Andes] and by the
volcanic rocks of the Cordillera Occidental [West Andes].
In some periods, the margin has behaved as an erosional
margin. In this study, the margin was considered erosio-
nal between the Lower and Middle Jurassic, during the
formation of this Jurassic arc.

8. CoNcLusIONS

The La Quinta Formation is a volcano-sedimentary unit
composed mainly of detrital sedimentary rocks (conglo-
merates, sandstones and mudstones) and subordinate
chemical sedimentary (limestones) and extrusive and
pyroclastic volcanic rocks. The extrusive rocks have a
basaltic, andesitic, dacitic and rhyolitic composition, and
the pyroclastic rocks are crystal-vitreous and lithic tuffs
of ash and lapilli size and agglomerates. The chemical
classification of the extrusive rocks based on higher oxi-
des matches the modal classification. The tuffs are chemi-
cally classified as dacites and rhyolites.

The chemistry results from this study and from pre-
vious studies indicate that the volcanic rocks were formed
in a subduction-related setting in a volcanic-plutonic arc
with compositional variations and eastward rejuvenation
related to an erosional continental margin arc.

The ages suggest that the volcanism began in ~191
Ma (Sinemurian) and continued until ~164 Ma, with at
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least three periods of increased volcanic activity: 186 Ma
(Pliensbachian), 179-181 Ma (Toarcian) Ma and 173-175
(Toarcian), and continued until the Middle Jurassic (Ca-
llovian).

The periods of peak volcanic activity are correlated
with similar periods in volcanic units during the Lower
and Middle Jurassic in the Upper Magdalena Valley (Sal-
dafa Formation and Pitalito Vulcanites), the San Lucas
mountain range (Noredn Formation), Sierra Nevada de
Santa Marta (Guatapuri and Corual formations, Caja de
Ahorros, La Paila and Los Clavos ignimbrites, Triassic
spilites, keratophyric porphyries, Los Tabanos Rhyodaci-
te and Golero Rhyolite), and the Cocinas mountain range
(Ipapure-Cerro La Teta Rhyodacite). All these units, in-
cluding the La Quinta Formation, have similar chemical
and petrographic compositions; in these units, the inhe-
rited zircons mark similar populations and were formed
from the same Plutonic volcanic arc along the South
American paleomargin on a crystalline basement con-
sisting of Neoproterozoic rocks, Paleozoic sedimentary
units and Permian arc plutons, which appear in tectonic
blocks as we know them today.

The lack of xenocrystals with Ordovician ages in all
the correlated volcanic units of the Lower and Middle
Jurassic indicates that the La Quinta Formation did not
develop in the basement of the Famatinian orogen of the
Santander massif but was instead established in rocks of
the Neoproterozoic basement of the Putumayo orogen
and in intrusions of the Permian arc predating the Lower
and Middle Jurassic arc.
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Volcanism of the La Quinta Formation in the Perijd mountain range
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Volcanism of the La Quinta Formation in the Perijd mountain range
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Volcanism of the La Quinta Formation in the Perijd mountain range
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Volcanism of the La Quinta Formation in the Perijd mountain range
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Publication costs
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The content of the journal is protected under a Creative Commons - attribution license. Conse-
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Authorship
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The authors of an article approved for publication transfer copyright ownership rights to the Ser-
vicio Geoldgico Colombiano for its subsequent dissemination, reproduction and distribution in
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All articles are subject to a strict review process by two national or international referees. The mere
submission and receipt of articles does not guarantee their subsequent publication.
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author guidelines are verified. Subsequently, the review process begins, which is completely anon-
ymous for reviewers and authors. Once complete, in a period of no longer than three weeks, the
authors must address the suggestions and corrections made. In the event a suggestion is not in-
corporated, the authors should provide a detailed explanation in an additional letter. If the two
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reviewers recommend rejecting the article, the article will not be published. If the two reviewers’
recommendations are in disagreement, the article will be subjected to a third review. If publication
is recommended, but changes and a second review are required, the revised version will be sent to
a reviewer assigned by the editor for approval.

The reviewers must sign a confidentiality agreement and a declaration of conflict of interest, if
applicable, to safeguard the proper use of the information.

The estimated time between the delivery date of an article and its publication is on the order of
six calendar months.

Review format
The reviewers use the article review form of the Boletin Geoldgico that is available at the journal

website: https://revistas.sgc.gov.co/index.php/boletingeo
Declaration of ethics and good practices for editors

Responsibility for the content of the journal

The editor must assume responsibility for everything he or she publishes and must have establi-
shed procedures and policies to guarantee the quality of the material published and maintain the
integrity of the published record.

Editorial independence and integrity
An important part of the responsibility for making fair and impartial decisions is defending the
principle of editorial independence and integrity.

Separating decision-making from commercial considerations
The editor makes decisions based only on academic merit and assumes full responsibility for his

or her decisions.

Relationship of the editor with the director of the journal

The editor and those responsible for the journal have no role in content decisions for commercial or
political reasons. The editor should not be removed from his or her duties due to any journal content
unless there is editorial misconduct or the result of an independent investigation has concluded that
the editor’s decision to publish was contrary to the scientific-academic mission of the journal.

Journal metrics and decision making

The editor does not attempt to inappropriately influence the journal’s ranking by artificially in-
creasing any metric. For example, it is not appropriate to require that references to the articles of
that journal be included, except for purely academic reasons. The editor must ensure that the arti-
cles are reviewed for purely academic reasons and that the authors are not pressured to cite specitfic
publications for nonacademic reasons.

Ethical guidelines for authors and reviewers

Both reviewers and authors should understand and accept the international standards of research
ethics issued by the Committee on Publication Ethics regarding plagiarism and peer review, which
are the standards that the Boletin Geoldgico adheres to, namely:

SERVICIO GEOLOGICO COLOMBIANO 97


https://revistas.sgc.gov.co/index.php/boletingeo

98

Boletin Geoldgico

BOLETIN GEOLOGICO 46

Fabrication and falsification of data
The fabrication of data means that the researcher did not actually perform the study but instead
falsified the data. Data falsification means that the researcher performed the experiment but then

changed some of the data.

Plagiarism

Taking the ideas and work of other scientists without giving them credit is considered unfair and
dishonest behavior. Copying a phrase from someone else’s manuscript, even one that has been
previously published, without a proper citation is considered plagiarism; every author should use
their own words.

Multiple presentations

It is not ethical to send the same manuscript to more than one journal at the same time. Doing so
wastes the time of the editors and peer reviewers and can harm the reputation of the authors and
the journal in which the article is duplicated since the publication will have to be withdrawn.

Redundant publications (or “salami” publications)

This refers to the publication of many very similar manuscripts based on the same experiment.
The combination of the results in a very solid document is of greater interest for a selective journal.
It is recommended that the editor reject a weak document when it is suspected of being a slice of

salami”,

Contribution or incorrect attribution of an author
All the authors listed must have made a significant scientific contribution to the research in the
manuscript and must have approved all the claims. Do not forget to list all those who made an
important scientific contribution, including students and laboratory technicians. Do not “gift” au-
thorship to those who did not contribute to the article.

Identification of unethical practices

Tools and procedures are used to identify the authors who engage in unethical behavior. If an une-
thical practice is confirmed, the manuscript can be rejected without review, and your institution
will be informed of the incident.

Archiving and preservation
The Boletin Geoldgico uses the LOCKSS system as a storage system that allows the creation of per-

manent archives for conservation and restoration purposes.
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Instructions to Authors

Authorship

Authorship should be attributed to those who have actively and substantially contributed to the
intellectual content of the article and to its data analysis or interpretation; therefore, the authors are
responsible for the content of the submitted article. The list and order of authors must be reviewed
before submission, since after submitting the article author changes are not accepted.

Transfer of patrimonial copyright to the Servicio Geolégico Colombiano

The authors of an article approved for publication will transfer the patrimonial copyright to the
Servicio Geoldgico Colombiano for its subsequent publication, reproduction and distribution in
any print and online media the Servicio Geoldgico Colombiano may choose and for its inclusion

in databases and in national or international citation indexes.

Obligations of the authors

» Know the editorial policy of the Geological Bulletin and the derived processes, and agree with
them.

» Include as authors all the people who contributed to the writing of the manuscript.

» Abide by all ethical guidelines for authors and evaluators.

» In the event that the evaluators of the article/publication suggest the need to make changes
or adjustments before their approval, the authors undertake to make such adjustments in the
times required by the Geological Bulletin.

The authors’ obligations will be included in the authorship letter found at the journal website:
https://revistas.sgc.gov.co/index.php/boletingeo

Submission criteria
All articles submitted for consideration for publication must meet the following submission crite-

ria:

» Articles must be sent in Word format by this web page, in the “Submit articles” tab of the Ins-
tructions to authors.

» The title, in Spanish and English, should be concise and reflect the subject matter.

» The name, highest academic title and complete institutional affiliation of each author and the
email of the corresponding author must be included.

» The abstract and keywords must be included in both Spanish and English. Images must be
attached as individual graphics files, with a minimum resolution of 300 dpi.
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Editorial guidelines

Tables

Tables must be submitted in an editable format, not as images, and they must be accompanied by
an explicit legend and source. They must be referenced in the text, and they must be essential to
explain or further support the argument of the article.

Figures

Figures, such as diagrams, photographs or maps, should be sent in graphics files with a minimum
resolution of 300 dpi. Each figure must be cited in the text and be accompanied by an explanatory
legend that includes the source.

Images from sources other than the authors of the article must have the permission from the
authors of the original image, be free of copyright conflicts or have a Creative Commons license
(for further information, please refer to: https://co.creativecommons.org/). Maps, aerial photogra-
phs and satellite images should include a graphic scale.

Citations

The citation format of Boletin Geoldgico is American Psychological Association (APA) style. In
the text, citations must include the author’s name and date of publication, and all references must
be listed in the references section.

When several works by the same author are cited, they must be organized in chronological
order and will be shown separated by a comma: (Groat, 2014).

When a reference has two authors, the surnames of both authors must be cited and separated
by the conjunction “&”: (Pokrovski & Dubessy, 2014).

When the reference has three or more authors, only the first author must be cited, followed by
the abbreviation “et al”: (Feneyrol et al., 2013).

In the case of a corporate author, the name of the organization must be written the first time
with the acronym in parentheses, followed by the year; subsequently, only the acronym will be
mentioned (Servicio Geoldgico Colombiano (SGC), 2017).

When citing several references, they must be chronologically sorted and separated by semico-
lons: (Mantilla et al., 2013; Van der Lelij et al., 2016; Rodriguez et al., 2017). When a specific page
of a reference is cited, the page number must be included after the year and be preceded by the
abbreviation p., or pp. in the case of several pages: (Groat, 2014, p. 48).

Quotes

When the quote is shorter than forty words, it must be written within the paragraph, in quotation

marks and without italics. The reference must be included at the end of the quote (Groat, 2014, p. 48).
When the quote is longer than forty words, it must be written in a separate paragraph, with a

2.5-cm left indent, without quotation marks or italics and with a font size one point smaller than

the body text. The reference must be included at the end of the quotation (Groat, 2014, p. 48).

References

According to the APA format, only the first letter (initial) of the first names of the authors is pro-
vided. In the case where two surnames are included, they must not be separated by a hyphen.
References must be written in single-space format and with a 1-cm hanging indent (in a hanging
indent, the first line of the paragraph is not indented, and all subsequent lines are indented, in this
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case, 1 cm). If the documents have a Digital Object Identifier (DOI), this identifier must be inclu-
ded at the end of the reference.

Books
Only the first letter (initial) of the first word and of proper names, if any, in the titles of books are
capitalized. The titles should be italicized, and the subtitle separated from the title by a colon, not
by a period. In Spanish, the first letter of a word following a colon is written in uppercase font; in
English, this letter is capitalized.

The information provided must strictly match that included in the following examples and
follow the same rules of punctuation between each element of the reference:

Lee, M. S. (2012). Mass Spectrometry Handbook (Vol. 1). New Jersey: Wiley.
Bormann, P. (2013). New Manual of Seismological Observatory Practice 2 (NMSOP-2). Potsdam:
Deutsches GeoForschungsZentrum. https://doi.org/10.2312/GFZ.NMSOP-2_DS_3.1.

Book chapters
Book chapters follow the same rules as those of book titles, except for one difference: the titles of
book chapters must not be italicized. The title of the book must be italicized and preceded by the
preposition “In”

The information provided must strictly match that included in the following examples and
follow the same rules of punctuation between each element of the reference:

Horstwood, M. (2008). Data reduction strategies, uncertainty assessment and resolution of LA-
(MC-) ICP-MS isotope data. In P. Sylvester (Ed.), Laser ablation-ICP-MS in the Earth Sciences:
Current practices and outstanding issues. Vancouver: Mineralogical Association of Canada.

Reimann, C,, Birke, M., Demetriades, A., Filzmoser, P, & O’Connor, P. (2014). The gemas project -
concept and background. In C. Reimann, A. Demetriades, M. Birke & I. Schoeters (Eds.). Che-
mistry of Europe’s Agricultural Soils, Part A. Hannover: Bundesanstalt fur Geowissenschaften
und Rohstoffe.

Journal articles
Titles of journal articles follow the same rules as those of titles of book chapters, except for one
difference: the first letters of all meaningful words (first word, names, verbs and adjectives) of titles
of journal articles must be written in uppercase font and italicized, but they must not be preceded
by the preposition “In”

The information provided must strictly match that included in the following examples and
follow the same rules of punctuation between each element of the reference:

Domeier, M. & Torsvik, T. (2014). Plate tectonics in the late Paleozoic. Geoscience Frontiers, 5 (3):
303-350. https://doi.org/10.1016/j.gsf.2014.01.002.

Konstantinou, K. (2015). Tornillos modeled as self-oscillations of fluid filling a cavity: application
to the 1992-1993 activity at Galeras volcano, Colombia. Physics of the Earth and Planetary Inte-
riors, 238: 23-33. https://doi.org/10.1016/j.pepi.2014.10.014.
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Thesis works
Saylor, J. (2008). The Late Miocene Through Modern Evolution of the Zhada Basin, South-Western
Tibet. (Ph. D. Thesis). The University of Arizona, Tucson.

Conferences, seminars and others
The titles of talks given in these contexts are written without italics, and only the first letter of the
first word and proper nouns, if included, are capitalized. All meaningful words in event names are
capitalized.

The information provided must strictly match that included in the following example and fo-
llow the same rules of punctuation between each element of the reference:

Sulochana, V., Francis, A. & Tickle, A. (2015). Morphology based radon processed neural network
for transmission line fault detection. 2015 International Conference on Advances in Computing,
Communications and Informatics (ICACCI).

Maps
The information provided must strictly match that included in the following example and follow
the same rules of punctuation between each element of the reference:

Bacchin, M., Miligan, P. R., Wynne, P. & Tracey, R. (2008). Gravity anomaly map of the Australian
region, 3rd edn, 1:5,000,000. Geoscience Australia, Canberra.

Web pages
EURAQUEM/CITAC. (2016). Guide to quality in analytical chemistry an aid to accreditation. Re-
trieved from www.eurachem.org.

Suggested links

- Keywords in the Geosciences: https://www.americangeosciences.org/georef/georef-thes-
aurus-lists

- Creative Commons: https://co.creativecommons.org/
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