Estimation of radioactive activity by gamma spectroscopy
DOI:
https://doi.org/10.32685/2590-7468/invapnuclear.7.2023.667Palabras clave:
Espectroscopía gamma, cadena de decaimiento, actividad radiactiva, eficiencia absolutaLicencia
Derechos de autor 2023 Servicio Geológico Colombiano
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Descargas
Cómo citar
Número
Sección
Publicado
Resumen
Fuentes radiactivas de los isótopos de 22Na, 137Cs, 60Co, 133Ba y las cadenas de decaimiento de Th y U son analizadas por medio de espectroscopía gamma. El instrumento usado; un centelleador cilíndrico de NaI(Tl) de Mirion Technologies (Canberra) con dimensiones 2 × 2 se caracteriza mediante su calibración y eficiencia absoluta. Los máximos de energías en los espectros gamma obtenidos son identificados y relacionados con sus isótopos correspondientes y las interacciones radiación-materia de acuerdo con bases de datos de estructura nuclear y atómica. A partir de estos datos, se implementan métodos espectroscópicos para calcular las actividades radiactivas de cada fuente.
Referencias bibliográficas
K. S. Krane, Introductory nuclear physics. New York, NY: Wiley, 1988.
S. G. Prussin, Nuclear physics for applications: a model approach. Wiley-VCH, 2007.
G. F. Knoll, Radiation detection and measurement, 2nd ed. Wiley New York, 1989.
N. Tsoulfanidis, Measurement and detection of radiation, 4th edition. Boca Raton, FL: CRC Press, 2015.
S. Tavernier, Experimental Techniques in Nuclear and Particle Physics. Berlin, Germany: Springer, 2010. https://doi.org/10.1007/978-3-642-00829-0
E. V. Sayre, “Methods and Applications of Activation Analysis”, Annual Review of Nuclear Science, vol. 13, no. 1, pp. 145-162, 1963, https://doi.org/10.1146/annurev.ns.13.120163.001045
M. Moussa, “Gamma-ray spectrometry: a new tool for exploring archaeological sites; a case study from East Sinai, Egypt”, Journal of Applied Geophysics, vol. 48, no. 3, pp. 137-142, 2001, https://doi.org/10.1016/S0926-9851(01)00077-5
J. Sanjurjo-Sánchez, C. Arce Chamorro, C. Alves, J. C. Sánchez-Pardo, R. Blanco-Rotea, and J. M. Costa-García, “Using in situ gamma ray spectrometry (GRS) exploration of buried archaeological structures: A case study from NW Spain”, Journal of Cultural Heritage, vol. 34, pp. 247-254, 2018, https://doi.org/10.1016/j.culher.2018.05.004
P. B. Siegel, “Gamma spectroscopy of environmental samples”, American Journal of Physics, vol. 81, no. 5, pp. 381-388, 2013, https://doi.org/10.1119/1.4793595
E. B. Norman, “Nuclear Forensics using Gamma-ray pectroscopy”, EPJ Web Conf., vol. 123, p. 04001, 2016, https://doi.org/10.1051/epjconf/201612304001
National Nuclear Data Center. https://www.nndc.bnl.gov/
International Atomic Energy Agency Nuclear Data Services. https://www-nds.iaea.org/
Laboratoire National Henri Becquerel Atomic and Nuclear data. http://www.lnhb.fr/nuclear-data/module-lara/
D. M. M. Olivares, E. S. Koch, M. V. M. Guevara, and F. G. Velasco, “Determination of uranium and thorium using gamma spectrometry: a pilot study”, Journal of Physics: Conference Series, vol. 975, p. 012035, Mar. 2018, https://doi.org/10.1088/1742-6596/975/1/012035
M. Długosz-Lisiecka, “Comparison of two spectrometric counting modes for fast analysis of selected radionuclides activity”, Journal of Radioanalytical and Nuclear Chemistry, vol. 309, pp. 941-945, 2016, https://doi.org/10.1007/s10967-015-4688-y
G. Gilmore, “Practical Gamma-Ray Spectrometry”, 2nd Edition, Wiley-VCH Verlag, Wenheim, Germany, 2008.
02 Scintillation Detectors. Mirion Technologies (Canberra) Inc., 2017. [Online]. https://mirion.s3.amazonaws.com/cms4_mirion/files/pdf/spec-sheets/csp0232_802_super_spec_2.pdf?1557861234
A. Kadum, and B. Dahmani, “Efficiency calculation of NaI(Tl) 2 × 2 well-shaped detector”, Instruments and Experimental Techniques, vol. 58, pp. 429-434, 2015, https://doi.org/10.1134/S0020441215030070
I. Mouhti, A. Elanique, M. Y. Messous, B. Belhorma, and A. Benahmed, “Validation of a NaI(Tl) and LaBr3(Ce) detector’s models via measurements and Monte Carlo simulations”, Journal of Radiation Research and Applied Sciences, vol. 11, no. 4, pp. 335-339, 2018, https://doi.org/10.1016/j.jrras.2018.06.003
S. Ahmadi, S. Ashrafi, and F. Yazdansetad, “A method to calculate the gamma ray detection efficiency of a cylindrical NaI (Tl) crystal”, Journal of Instrumentation, vol. 13, no. 5, pp. P05019-P05019, May 2018, https://doi.org/10.1088/1748-0221/13/05/p05019
X-Ray Mass Attenuation Coefficients. https://physics.nist.gov/PhysRefData/XrayMassCoef/tab3.html
S. Sadasivan, and V. M. Raghunath, “Intensities of gamma rays in the 232Th decay chain”, Nuclear Instruments and Methods in Physics Research, vol. 196, no. 2, pp. 561-563, 1982, https://doi.org/10.1016/0029-554X(82)90153-7
X-ray Transition Energies Database Main Page. https://physics.nist.gov/PhysRefData/XrayTrans/Html/search.html
M. L. Smith, L. Bignell, D. Alexiev, L. Mo, and J. Harrison, “Evaluation of lead shielding for a gamma-spectroscopy system”, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 589, no. 2, pp. 275-279, 2008, https://doi.org/10.1016/j.nima.2008.02.050
T. C. O’Haver, A Pragmatic Introduction to Signal Processing. Kindle Direct Publishing, 2022.
https://commons.wikimedia.org/wiki/File:Decay_Chain_of_Thorium.svg
https://commons.wikimedia.org/wiki/File:Decay_Chain_of_Uranium-238.svg