Natural radiation inside Cueva del Tigre of Yaguará, Huila, Colombia
DOI:
https://doi.org/10.32685/2590-7468/invapnuclear.4.2020.560Keywords:
Radon, cave, Huila, radioactivity, tourismDownloads
How to Cite
Issue
Section
Published
Abstract
In the scope of the present work the degree of exposure to natural radiation to which tourists and tour guides are subjected during their time inside the Cueva del Tigre in the municipality of Yaguará, department of Huila, was investigated. Extensive field works were carried out in October 2017 and February 2018, considering in detail, firstly, some morphological aspects, which define the possibilities of underground ventilation; second, microclimatic aspects such like relative humidity and indoor air temperatures, which are affected by subsoil properties such as porosity, permeability and active geological faulting; and third, the levels of radon gas and its state of equilibrium with its short-lived descendants, generators of alpha particles, and therefore main responsible for the effective doses of ionizing radiation. Annual doses were estimated for probable scenarios of sporadically visits to the cave and cases for longer stay inside them, observing that stays of more than 100 hours per year in a central gallery can potentially exceed the limits recommended by national and international regulations.
References
A. A. Cigna, “Radon in caves”, International Journal of Speleology, vol. 34, n.os 1-2, pp. 81-109, 2005. http://dx.doi.org/10.5038/1827-806X.34.1.1
H. S. Virk, “Radon studies for uranium exploration, environment health hazards and earthquake prediction”, Research & Reviews: Journal of Space Science & Technology, vol. 7, n.° 2, pp. 11-20, 2018. https://doi.org/10.37591/.v7i2.1161
H. Aoshima y Y. Hashiguchi, J. Moriizumi, K. Yoshioka, Y. S. Kim, T. Lida, “A study of atmospheric radon transport as a tracer of pollutants over the Japan Sea”, Radioactivity in the Environment, vol. 7, pp. 567-572, 2005. https://doi.org/10.1016/S1569-4860(04)07068-8
A. Riggio y M. Santulin, “Earthquake forecasting: A review of radon as a seismic precursor”, Bollettino di Geofisica Teorica ed Applicata, vol. 56, n.° 2, pp. 95-114, 2015, https://doi.org/10.4430/bgta0148
M. Nikolaishvili, S. Omiadze, T. Shishniashvili, D. Zurabashvili y G. Parulava, “Complex study of medicinal propierties of radon in mineral water of Tskaltubo and oral cavity mineralization recovery in patients with periodontitis”, Georgian Medical News, vol. 282, pp. 39-43, 2018.
R. W. Field, D. J. Steck, B. J. Smith, C. P. Brus, E. L. Fisher, J. S. Neuberger, C. E. Platz, R. A. Robinson, R. F. Woolson y C. F. Lynch, “Residential radon gas exposure and lung cancer: The Iowa radon lung cancer”, American Journal of Epidemiology, vol. 151, n.° 11, pp. 1091-1102, 2000. https://doi.org/10.1093/oxfordjournals.aje.a010153
J. H. Lubin, J. D. Boice y C. Edling, Radon and lung cancer risk: A joint analysis of 11 underground miner studies, vol. 94. Washington: US Department of Health and Human Services, National Institutes of Health, 1994, p. 3644.
A. M. Zarnke, S. Tharmalingam, D. R. Boreham y A. L. Brooks, “BEIR IV radon: The rest of the story”, Chemico-Biological Interactions, vol. 301, pp. 81-87, 2019, https://doi.org/10.1016/j.cbi.2018.11.012
T. A. Przylibsli, Radon: A radioactive therapeutic element, Special Publications, vol. 451. London: Geological Society, 2016, pp. 209-236. https://doi.org/10.1144/SP451.7
US-EPA Environments Division, A citizen’s guide to radon: The guide to protecting yourself and your family from radon. US-EPA, Washington, DC, 6609L, 2004. https://www.epa.gov/radon/citizens-guide-radon-guide-protecting-yourself-and-your-family-radon
OMS, Manual de la Organización Mundial de la Salud sobre el radón en interiores: Una perspectiva de salud pública”. Proyecto Internacional del Radón de la OMS, Ginebra, Suiza, 118 pp., 2015. https://apps.who.int/iris/bitstream/handle/10665/161913/9789243547671_spa.pdf;jsessionid=F68AB0F7B2BAB84F7DCE1FD8F3B-156CE?sequence=1
Ministerio de Minas y Energía, República de Colombia, Resolución 18-1434, 2002. https://docs.supersalud.gov.co/PortalWeb/Juridica/OtraNormativa/R_MME_181434_2002.pdf
ICRP, The 2007 Recommendations of the International Commission on Radiological Protection. Annals of the ICRP, vol. 37, n.° 2-4, , 2007. https://www.icrp.org/publication.asp?id=ICRP%20Publication%20103
M. E. Páramo, “Yaguarasaurus columbianus (Reptilia mosasauridae), a primitive mosasaur from the Toronian (Upper Cretaceous) of Colombia”, Historical Biology, vol. 14, n.° 1-2, pp. 121-131, 2000. https://doi.org/10.1080/10292380009380560
D. H. Escobar y A. Camacho, Informe de arqueología, Programa Sísmico Upar 3D, Ecopetrol, 2013, https://doi.org/10.13140/rg.2.1.1727.4088
G. Garzón, “Comisión de Campo Fisquim cueva El Tigre”, 5 diciembre, 2017. https://www.youtube.com/watch?reload=9&v=mXgEqE6OMGM
Yaguará-EOT, Esquema de Ordenamiento Territorial del municipio de Yaguará, Huila, Concejo Municipal, Acuerdo n.° 44 de 2013. http://www.yaguara-huila.gov.co/Transparencia/PlaneacionGestionyControl/Formato%20de%20Regal%C3%ADas%202013.pdf
C. Morales, J. C. Caicedo, F. Velandia y A. Núñez, Geología de la plancha 345, Campoalegre, escala 1:100.000, memoria explicativa, Ingeominas, 2001, https://doi.org/10.13140/2.1.3373.0885
M. Dentith y S. T. Mudge, Geophysics for the Mineral Exploration Geoscientist, University Printing House, Cambridge, United Kingdom, 2014.
P. Kotrappa y D. Steck, “Electret ion chamber-based passive radon-thoron discriminative monitors”, Radiation Protection Dosimetry, vol. 141, n.° 4, pp. 386-389, 2010, https://doi.org/10.1093/rpd/ncq231
G. Garzón, Radón: Manual teórico y práctico, Ingeominas, Colombia, 2009, https://doi.org/10.13140/2.1.1932.4800
P. Kotrappa, “Application of NIST 222Rn emanation standards for calibrating 222Rn monitors”, Radiation Protection Dosimetry, vol. 55, n.° 3, pp. 211-218, 1994. https://doi.org/10.1093/oxfordjournals.rpd.a082395
W. Jacobi, “Activity and potential alpha-energy of 222radon and 220radon-daughters in different air atmospheres”, Health Physics, vol. 22, pp. 441-450, 1972.
A. Swedjemark, “Recent swedish research on radon”, en EML indoor radon workshop 1982, Environmental Measurements Laboratory, U. S. Department of Energy, N. Y., pp. 52-57, 1982.
J. Planinic y Z. Faj, “The equilibrium factor between radon and its daughters”. Nuclear Instruments and Methods in Physics Research, vol. 278, n.° 2, pp. 550-552, 1989. https://doi.org/10.1016/0168-9002(89)90878-4
M. Arcila, J. García, J. Montejo, J. Eraso, J. Valcárcel, M. Mora, D. Viganò, M. Pagani y F. Díaz, Modelo nacional de amenaza sísmica para Colombia. Bogotá: Servicio Geológico Colombiano y Fundación Global Earthquake Model, 2020. https://doi.org/10.32685/9789585279469
A. Argüelles, “Cueva del Tigre”, 1 de diciembre, 2017. https://www.youtube.com/watch?v=Y8AwE0j-xPE&-feature=youtu.be
M. Dehghan, “Fully implicit finite differences methods for two-dimensional diffusion with a non-local boundary condition”, Journal of Computational and Applied Mathematics, vol. 106, n.° 2, pp. 255-269, 1999. https://doi.org/10.1016/S0377-0427(99)00065-5.
M. Heiligmann, J. Stix, G. Williams-Jones, B. Sherwood-Lollar y G. Garzón Valencia, “Distal degassing of radon and carbon dioxide on Galeras Volcano, Colombia”, Journal of Volcanology and Geothermal Research, vol. 77, n.° 1-4, pp. 267-283, 1997. https://doi.org/10.1016/S0377-0273(96)00099-6
D. Serna, C. Morán, M. Hernández y G. Garzón, “Casos históricos colombianos del registro de anomalías del radón-222 antes de eventos sísmicos de naturaleza tectónica”, Revista Geofísica Colombiana, vol. 7, pp. 49-54, 2003. http://bdigital.unal.edu.co/32077/1/31422-113869-1-PB.pdf
G. Garzón, W. Hincapié y S. Salazar, “Indoor air: Radiological geohazard survey in the southeast of Manizales city, Colombia”, Fourth Colombian Congress and International Symposium on Air Quality and Public Health, Proceedings, Publishing office, Universidad de la Salle, Bogotá, pp. 390-394, 2013.