Development of a computational tool based on image processing for the quality control automation of lead based personal protection equipment

Authors

Keywords:

PPE, quality control, crack, image processing, rejection criteria

How to Cite

[1]
J. C. Alcalde Poveda and E. Muñoz Arango, “Development of a computational tool based on image processing for the quality control automation of lead based personal protection equipment ”, rev. investig. apl. nucl., no. 7, Aug. 2024.

Issue

Section

Articles

Published

2024-08-26

Abstract

Purpose: The use of leaded personal protective equipment (PPE) is a radiological protection measure against scattered radiation generated in medical procedures involving the use of equipment or sources that emit ionizing radiation. Periodic quality controls (QC) with tomography images make it possible to ensure the condition and absence of cracks in PPE for routine clinical use. By means of acceptance or rejection criteria it is possible to decide whether it is viable and safe to continue using them in order to guarantee adequate radiological protection to the individual. The objective of this work is to automate the QC of PPE by developing a computational tool using an image processing approach and applying acceptance and rejection criteria based on the quantification of the cracks.

Methods: Digital images of the PPE’s were acquired by computed tomography (CT) as a basis for the creation and parameterization of an optimization tool using Python language. An algorithm was developed that changed from DICOM format to grayscale PNG to optimize the analysis and processing of the image information. Image processing techniques and methods were applied on these PNG images that allow the tool to classify PPE according to their type, plumbed vests and thyroid protectors. Subsequently, a model was programmed to detect possible cracks in the PPE and a configuration was created to allow manual selection of objects that are not to be quantified. Finally, the tool was programmed to calculate the total area of cracks detected in each PPE by applying correction factors and rejection or acceptance criteria according to the total area of cracks identified in the QC.

Results: The tool satisfactorily classified all the PPE that were evaluated, adequately classifying the 30 vests and 21 lead collars. Of the above, the program detected 9 PPE with possible cracks, all of them being vests, of which 5 actually had cracks in the lead and the other 4 only showed pronounced folds. The total area of cracks ranged from 6.1  to 12.5 .  Finally, the tool yielded rejection criteria for only one of the 5 vests showing cracks, considering that the allowable limit area is up to 10  according to the literature.

Conclusions:   The development of the proposed tool using image processing techniques for the detection and quantification of fissures is viable as a method of QC automation,achieving a good identification of the fissures with an accuracy greater than 97%. The use of computational tools for the optimization of radiation protection processes allows reducing time and observer dependence in the execution of QC.

References

. E. B. Duran y B. Phillips, “Rejection criteria for defects in lead apparel used for radiation protection of X-ray workers”. Radiation Protection Services, BC Center for Disease Control. 2003. [En línea]. https://www.fisicamedica.it/archivio/sites/default/files/documenti/003_Rejection_Criteria_for_Defects_in_Lead_Apparel_used_for_Radiation_Protection_of_X-Ray_Workers__E-B-_Duran_and_B-_Philips_.pdf

. 1990 Recommendations of the International Commission on Radiological Protection. Publication 60, International Commission on Radiological Protection, Ontario, vol. 21, n.° 1-3, 1991. [En línea]. www.icrp.org

. Radiological Protection in Medicine. Publication 105, International Commission on Radiological Protection, Ontario, vol. 33, n.° 6, 2007. [En línea]. www.icrp.org

. Application of the Commission’s Recommendations to the Protection of People Living in Long-term Contaminated Areas after a Nuclear Accident or a Radiation Emergency. Publication 111, International Commission on Radiological Protection, Ontario, vol. 39, n.° 3, 2009. [En línea]. www.icrp.org

. Exposure Factors Handbook, U.S. Environmental Protection Agency, Washington, D. C., EPA/600/R-09/052F, 2011. [En línea]. https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=236252

. Resolución 181434 de 2002. Por la cual se adopta el reglamento de protección y seguridad radiológica, Ministerio de Minas y Energías, 2002. [En línea]. https://www.icbf.gov.co/cargues/avance/docs/resolucion_minminas_181434_2002.htm

. K. Lambert y T. McKeon, “Inspection of lead aprons: Criteria for rejection”, Health Physics, vol. n.° 80, supl. 5, pp. S67-S69, 2001. https://doi.org/10.1097/00004032-200105001-00008

. K. Greenway, A. Murphy, F. Gaillard et al.,“Hounsfield unit”, Radiopaedia.org (internet), 2015, jul. https://doi.org/10.53347/rID-38181

. R. Bibb, “3-Export data format and media”, en Medical modelling: The application of advanced design and development techniques in medicine, Sawston:Woodhead Publishing, 2006, pp. 32-36. https://doi.org/10.1533/9781845692001.32

. T. R. Moen, B. Chen, D. R. Holmes et al., “Low-dose CT image and projection Dataset”, Medical Physics, vol. 48, n.° 2, nov., pp. 902-911, 2021. https://doi.org/10.1002/mp.14594

W. Serna Serna, J. P. Trujillo Lemus y J. H. Rivera Piedrahita, “Descripción del estándar DICOM para un acceso confiable a la información de las imágenes médicas”, Scientia et Technica, vol. 2, n.° 45, ago., 2010, SN - 0122-1701. https://www.redalyc.org/articulo.oa?id=84917249053

. K. E. Hazzan y M. Pacella, “Crack identification intungsten carbide using image processing techniques”, Procedia Structural Integrity, vol. 37, pp. 274-281, 2022. https://doi.org/10.1016/j.prostr.2022.01.085

. O. H. Moreno-Torres, J. A. Ballesteros-Ricaurte y J.S. González-Sanabria, “Transformación de archivos Dicom a formatos XML, JPEG y PNG”, Revista Científica, vol. 21, n.° 1, ene., pp. 71-80, 2015. https://doi.org/10.14483/udistrital.jour.RC.2015.21.a7

. M. J. Pérez Langarano, Implementación de un sistema web para la interpretación, procesamiento y visualización de imágenes Dicom en el hospital Guayaquil, tesis de pregrado, Universidad Politécnica Salesiana, Quito, 2018. http://dspace.ups.edu.ec/handle/123456789/16507

. Y. Wang, J. Y. Zhang, J. X. Liu et al., “Research on crack detection algorithm of the concrete bridge based on image processing”, Procedia Computer Science, vol. 154, pp. 610-616, 2019. https://doi.org/10.1016/j.procs.2019.06.096

Joel José P.C. Rodrigues, Sandra Sendra Compte, Isabel de la Torra Diez,4 - Digital Imaging and Communications in Medicine,e-Health Systems,Elsevier,2016,Pages 53-74,ISBN 9781785480911, https://www.elsevier.com/books/e-health-systems/rodrigues/978-1-78548-091-1

. Z. J. Yang, A. Qsymah, Y. Z. Peng et al., “4D characterisation of damage and fracture mechanisms of ultra high performance fibre reinforced concrete by in-situ micro X-ray computed tomography tests”, Cement and Concrete Composites, vol. 106, p. 103473, 2020. https://doi.org/10.1016/j.cemconcomp.2019.103473

. L. Schöttl, P. Kolb, W. V. Liebig et al., “Crack characterization of discontinuous fiber-reinforced composites by using micro-computed tomography: Cyclic in-situ testing, crack segmentation and crack volume fraction” Composites Communications, vol. 21, p. 100384, 2020. https://doi.org/10.1016/j.coco.2020.100384

R. C. Gonzales y R. E. Woods, Digital image processing, 4.ª ed., Londres: Pearson Education, 1999. https://dl.icdst.org/pdfs/files4/01c56e081202b62bd7d3b4f8545775fb.pdf

. J. C. Castillo García, Algoritmos para la restauración de imágenes digitales en colores, tesis de maestría, Centrode Investigación en Computación, Instituto Politécnico Nacional, 2015. https://www.saber.cic.ipn.mx/SABERv3/Repositorios/webVerArchivo/25863/1

. P. Querejeta Simbeni, “Procesamiento digital de imágenes”. [En línea], 2015. http://lcr.uns.edu.ar/fvc/Notas-DeAplicacion/FVC-QuerejetaSimbeniPedro.pdf

H. Kim, E. Ahn, M. Shin et al., “Crack and noncrack classification from concrete surface images using machine learning”, Structural Health Monitoring, vol. 18, n.° 3, pp. 725-738, 2019. https://doi.org/10.1177/1475921718768747

. G. Roelofs, “Chapter 19 - PNG Lossless Image Compression”, en Communications, Networking and Multimedia, Lossless Compression Handbook, K. Sayood, ed., Cambridge: Academic Press, 2003, pp. 371-390. https://doi.org/10.1016/B978-012620861-0/50020-6

J. L. Devore. (2018). Fundamentos de probabilidad y estadística, 1.ª. ed. https://www.academia.edu/42825973/FUNDAMENTOS_DE_

PROBABILIDAD_Y_ESTAD%C3%8DSTICA

. L. Bjørkås, S. Blø, M. K. Rekdal et al., “Quality of radiation protection aprons and quality control routines at different diagnostic imaging modalities”, Radiography Open, vol. 6, n.° 1, pp. 64-74, 2020. https://doi.org/10.7577/radopen.4050

. O. Bawazeer, “Quality assurance of personal radiation shield for kilovoltage photon: A multicentre experience”, Risk Management Healthcare Policy, vol. 24, n.° 14, mar., pp. 1263-1270, 2021. https://doi.org/10.2147/RMHP.S298783

. R. S. Livingstone y A. Varghese, “A simple quality control tool for assessing integrity of lead equivalent aprons”, Indian Journal of Radiology and Imaging, vol. 28, n.° 2, abr.-jun., pp. 258-262, 2018. https://doi.org/10.4103/ijri.IJRI_374_17

. R. Michel y M. J. Zorn, “Implementation of an X-ray radiation protective equipment inspection program”, Health Physics, vol. 82, supl. 2, pp. S51-S53, 2002. https://doi.org/10.1097/00004032-200202001-00012

. J. P. McCaffrey, H. Shen, B. Downton et al., “Radiation attenuation by lead and onlead materials used in radiation shielding garments”, Medical Physics, vol. 34, n.° 2, pp. 530-537, 2007. https://doi.org/10.1118/1.2426404

. M. M. Rehani, O. Ciraj-Bjelac, E. Vañó et al., “ICRP Publication 117. Radiological protection in fluoroscopically guided procedures performed outside the imaging department”, Annals of the ICRP, vol. 40, n.° 6, pp. 1-102, 2010. DOI: 10.1016/j.icrp.2012.03.001

. M. Matsuda y T. Suzuki, “Evaluation of lead aprons and their maintenance and management at our hospital”, Journal of Anesthesia, vol. 30, n.° 3, pp. 518-521, 2016. https://doi.org/10.1007/s00540-016-2140-2

. D. Oppliger-Schäfer y H. W. Roser, “Quality assurance of X-ray protection clothing at the university hospital Basel”, en Annual Conference of SSRMP, Basel, 2009, pp.1-5.

. R. Michel y M. J. Zorn, “Implementation of an X-ray radiation protective equipment inspection program”, Health Physics, vol. 82, supl. 2, pp. S51-S53, 2002. https://doi.org/10.1097/00004032-200202001-00012

Australian/New Zealand Standard™. AS / NZS 2161 Occupational Protective Gloves. Part 1: Selection,Use and Maintenance, 2000. AS/NZS 2161.1. https://www.saiglobal.com/pdftemp/previews/osh/as/as2000/2100/21611.pdf

. M. J. Shymko, “Minimizing occupational exposure”, Radiologic Technology, vol. 70, n.° 1, pp. 89-90, 1998. Disponible en https://pubmed.ncbi.nlm.nih.gov/9779512/

Downloads

Download data is not yet available.