Ajustes metodológicos desarrollados durante los ejercicios de intercomparación para la determinación de emisores gamma en muestras ambientales
DOI:
https://doi.org/10.32685/2590-7468/invapnuclear.5.2021.579Keywords:
Gamma ray spectrometry, proficiency test, method validation, qualification criteria, analytical quality assuranceLicense
Copyright (c) 2021 Servicio Geológico Colombiano

This work is licensed under a Creative Commons Attribution 4.0 International License.
Downloads
How to Cite
Issue
Section
Published
Abstract
The Environmental Radiometry Laboratory (LRA in Spanish) has participated in proficiency tests carried out by the International Atomic Energy Agency (IAEA) since 2015, as part of its analytical quality assurance process. This work presents the results obtained by the LRA using the gamma ray spectrometry technique during his six years of participation, differentiating them according to type of sample and analyzed radionuclides. The description of the qualification criteria of the proficiency tests between laboratories and their relationship with the validation of the method is presented, as well as the improvements implemented to guarantee the validity of the results.
References
I. Canberra Industries, Model S574 LabSOCS™ Calibration Software, Technical Reference Manual, Meriden: Canberra Industries, Inc., 2015.
R. Eva, “Aplicaciones de la simulación Monte Carlo en dosimetría y problemas de física médica”, de Contribuciones del Instituto Nacional de Investigaciones Nucleares al avance de la Ciencia y la Tecnología en México, Ocoyoacac, Instituto Nacional de Investigaciones Nucleares al avance de la Ciencia y la Tecnología en México, 2010, pp. 89-105.
International Organization for Standardization, NTC-ISO/IEC17025:2017, Requisitos generales para la competencia de los laboratorios de ensayo y calibración, Bogotá, 2017.
International Union of Pure and Applied Chemistry, “Harmonized Guidelines for Single - Laboratory Validation of Methods of Analysis”, Pure and Applied Chemistry, vol. 74, n.° 5, pp. 835-855, 2002. https://doi.org/10.1351/pac200274050835
A. Luca, A. Watjen, E. Grigorescu, M. Sahagia y C. Ivan, “Conclusions from the participation at proficiency test for gamma-ray spectrometry measurements”, Romanian Journal of Physics, vol. 55, n.° 7-8, pp. 724-732, 2010.
R. Venkataraman, F. Bronson, V. Atrashkevich, M. Field y B. M. Young, “Improved detector response characterization method in ISOCS and LabSOCS”, Journal of Radioanalytical and Nuclear Chemistry, vol. 264, n.° 1, pp. 213-219, 2005. https://doi.org/10.1007/s10967-005-0696-7
F. L. Bronson, “Validation of the accuracy of the LabSOCS software for mathematical efficiency calibration of Ge detectors for typical laboratory samples”, Journal of Radioanalytical and Nuclear Chemistry, vol. 255, n.° 1, pp. 137-141, 2003. https://doi.org/10.1023/A:1022248318741
S. I. Kafala, “Simple maethod for true coincidence summing”, Journal of Radioanalytical and Nuclear Chemistry, vol. 191, n.° 1, pp. 105-114, 1995. https://doi.org/10.1007/BF02035990
A. Barba-Lobo, F. Mosqueda y J. Bolívar, “A general function for determining mass attenuation coefficients to correct self-absorption effects in samples measured by gamma spectrometry”, Radiation Physics and Chemistry, vol. 179, pp. 1-11, 2021. https://doi.org/10.1016/j.radphyschem.2020.109247
G. R. Gilmore, Practical Gamma-ray Spectrometry, Warrington: John Wiley & Sons, Ltd, 2008.
Z.-N. Tian, X.-P. Ouyang, Y. Liu, L. Chen, J.-L. Liu, X.-P. Zhang, J.-W. Song y M. Zeng, “Self-attenuation corrections calculated by LabSOCS Simulations for gamma-spectrometric measurements with HPGe detectors”, Chinese Physics C, vol. 38, n.° 7, pp. 1-6, 2014. https://doi.org/10.1088/1674-1137/38/7/076002