Estimation of radioactive activity by gamma spectroscopy

Authors

DOI:

https://doi.org/10.32685/2590-7468/invapnuclear.7.2023.667

Keywords:

Gamma spectroscopy, Gamma spectroscopy, decay chain, radioactive activity, absolute efficiency., radioactive activity, absolute efficiency

Downloads

How to Cite

[1]
A. Restrepo Giraldo and J. S. Ramírez, “Estimation of radioactive activity by gamma spectroscopy”, rev. investig. apl. nucl., no. 7, Feb. 2023.

Issue

Section

Articles

Published

2023-02-15

Abstract

Radioactive sources of isotopes 22Na, 137Cs, 60Co, 133Ba and decay chains of Th and U are analyzed by means of gamma spectroscopy. The instrument used, a cylindrical NaI(Tl) scintillator from Mirion Technologies (Canberra) with dimensions of 2 × 2, is characterized by its calibration and absolute efficiency. The peak energies of the gamma spectra obtained are identified and related to corresponding isotopes and matter-radiation interactions according to nuclear and atomic databases. From these data, spectroscopic methods are implemented to compute radioactive activities for each source.

References

K. S. Krane, Introductory nuclear physics. New York, NY: Wiley, 1988.

S. G. Prussin, Nuclear physics for applications: a model approach. Wiley-VCH, 2007.

G. F. Knoll, Radiation detection and measurement, 2nd ed. Wiley New York, 1989.

N. Tsoulfanidis, Measurement and detection of radiation, 4th edition. Boca Raton, FL: CRC Press, 2015.

S. Tavernier, Experimental Techniques in Nuclear and Particle Physics. Berlin, Germany: Springer, 2010. https://doi.org/10.1007/978-3-642-00829-0

E. V. Sayre, “Methods and Applications of Activation Analysis”, Annual Review of Nuclear Science, vol. 13, no. 1, pp. 145-162, 1963, https://doi.org/10.1146/annurev.ns.13.120163.001045

M. Moussa, “Gamma-ray spectrometry: a new tool for exploring archaeological sites; a case study from East Sinai, Egypt”, Journal of Applied Geophysics, vol. 48, no. 3, pp. 137-142, 2001, https://doi.org/10.1016/S0926-9851(01)00077-5

J. Sanjurjo-Sánchez, C. Arce Chamorro, C. Alves, J. C. Sánchez-Pardo, R. Blanco-Rotea, and J. M. Costa-García, “Using in situ gamma ray spectrometry (GRS) exploration of buried archaeological structures: A case study from NW Spain”, Journal of Cultural Heritage, vol. 34, pp. 247-254, 2018, https://doi.org/10.1016/j.culher.2018.05.004

P. B. Siegel, “Gamma spectroscopy of environmental samples”, American Journal of Physics, vol. 81, no. 5, pp. 381-388, 2013, https://doi.org/10.1119/1.4793595

E. B. Norman, “Nuclear Forensics using Gamma-ray pectroscopy”, EPJ Web Conf., vol. 123, p. 04001, 2016, https://doi.org/10.1051/epjconf/201612304001

National Nuclear Data Center. https://www.nndc.bnl.gov/

International Atomic Energy Agency Nuclear Data Services. https://www-nds.iaea.org/

Laboratoire National Henri Becquerel Atomic and Nuclear data. http://www.lnhb.fr/nuclear-data/module-lara/

D. M. M. Olivares, E. S. Koch, M. V. M. Guevara, and F. G. Velasco, “Determination of uranium and thorium using gamma spectrometry: a pilot study”, Journal of Physics: Conference Series, vol. 975, p. 012035, Mar. 2018, https://doi.org/10.1088/1742-6596/975/1/012035

M. Długosz-Lisiecka, “Comparison of two spectrometric counting modes for fast analysis of selected radionuclides activity”, Journal of Radioanalytical and Nuclear Chemistry, vol. 309, pp. 941-945, 2016, https://doi.org/10.1007/s10967-015-4688-y

G. Gilmore, “Practical Gamma-Ray Spectrometry”, 2nd Edition, Wiley-VCH Verlag, Wenheim, Germany, 2008.

02 Scintillation Detectors. Mirion Technologies (Canberra) Inc., 2017. [Online]. https://mirion.s3.amazonaws.com/cms4_mirion/files/pdf/spec-sheets/csp0232_802_super_spec_2.pdf?1557861234

A. Kadum, and B. Dahmani, “Efficiency calculation of NaI(Tl) 2 × 2 well-shaped detector”, Instruments and Experimental Techniques, vol. 58, pp. 429-434, 2015, https://doi.org/10.1134/S0020441215030070

I. Mouhti, A. Elanique, M. Y. Messous, B. Belhorma, and A. Benahmed, “Validation of a NaI(Tl) and LaBr3(Ce) detector’s models via measurements and Monte Carlo simulations”, Journal of Radiation Research and Applied Sciences, vol. 11, no. 4, pp. 335-339, 2018, https://doi.org/10.1016/j.jrras.2018.06.003

S. Ahmadi, S. Ashrafi, and F. Yazdansetad, “A method to calculate the gamma ray detection efficiency of a cylindrical NaI (Tl) crystal”, Journal of Instrumentation, vol. 13, no. 5, pp. P05019-P05019, May 2018, https://doi.org/10.1088/1748-0221/13/05/p05019

X-Ray Mass Attenuation Coefficients. https://physics.nist.gov/PhysRefData/XrayMassCoef/tab3.html

S. Sadasivan, and V. M. Raghunath, “Intensities of gamma rays in the 232Th decay chain”, Nuclear Instruments and Methods in Physics Research, vol. 196, no. 2, pp. 561-563, 1982, https://doi.org/10.1016/0029-554X(82)90153-7

X-ray Transition Energies Database Main Page. https://physics.nist.gov/PhysRefData/XrayTrans/Html/search.html

M. L. Smith, L. Bignell, D. Alexiev, L. Mo, and J. Harrison, “Evaluation of lead shielding for a gamma-spectroscopy system”, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 589, no. 2, pp. 275-279, 2008, https://doi.org/10.1016/j.nima.2008.02.050

T. C. O’Haver, A Pragmatic Introduction to Signal Processing. Kindle Direct Publishing, 2022.

https://commons.wikimedia.org/wiki/File:Decay_Chain_of_Thorium.svg

https://commons.wikimedia.org/wiki/File:Decay_Chain_of_Uranium-238.svg

Downloads

Download data is not yet available.

Most read articles by the same author(s)