Estimation of radioactive activity by gamma spectroscopy

Autores/as

DOI:

https://doi.org/10.32685/2590-7468/invapnuclear.7.2023.667

Palabras clave:

Espectroscopía gamma, cadena de decaimiento, actividad radiactiva, eficiencia absoluta

Métricas

Descargas

Cómo citar

[1]
A. Restrepo Giraldo y J. S. Ramírez, «Estimation of radioactive activity by gamma spectroscopy», rev. investig. apl. nucl., n.º 7, feb. 2023.

Número

Sección

Artículos

Publicado

2023-02-15

Resumen

Fuentes radiactivas de los isótopos de 22Na, 137Cs, 60Co, 133Ba y las cadenas de decaimiento de Th y U son analizadas por medio de espectroscopía gamma. El instrumento usado; un centelleador cilíndrico de NaI(Tl) de Mirion Technologies (Canberra) con dimensiones 2 × 2 se caracteriza mediante su calibración y eficiencia absoluta. Los máximos de energías en los espectros gamma obtenidos son  identificados y relacionados con sus isótopos correspondientes y las interacciones radiación-materia de acuerdo con bases de datos de estructura nuclear y atómica. A partir de estos datos, se implementan métodos espectroscópicos para calcular las actividades radiactivas de cada fuente.

Referencias bibliográficas

K. S. Krane, Introductory nuclear physics. New York, NY: Wiley, 1988.

S. G. Prussin, Nuclear physics for applications: a model approach. Wiley-VCH, 2007.

G. F. Knoll, Radiation detection and measurement, 2nd ed. Wiley New York, 1989.

N. Tsoulfanidis, Measurement and detection of radiation, 4th edition. Boca Raton, FL: CRC Press, 2015.

S. Tavernier, Experimental Techniques in Nuclear and Particle Physics. Berlin, Germany: Springer, 2010. https://doi.org/10.1007/978-3-642-00829-0

E. V. Sayre, “Methods and Applications of Activation Analysis”, Annual Review of Nuclear Science, vol. 13, no. 1, pp. 145-162, 1963, https://doi.org/10.1146/annurev.ns.13.120163.001045

M. Moussa, “Gamma-ray spectrometry: a new tool for exploring archaeological sites; a case study from East Sinai, Egypt”, Journal of Applied Geophysics, vol. 48, no. 3, pp. 137-142, 2001, https://doi.org/10.1016/S0926-9851(01)00077-5

J. Sanjurjo-Sánchez, C. Arce Chamorro, C. Alves, J. C. Sánchez-Pardo, R. Blanco-Rotea, and J. M. Costa-García, “Using in situ gamma ray spectrometry (GRS) exploration of buried archaeological structures: A case study from NW Spain”, Journal of Cultural Heritage, vol. 34, pp. 247-254, 2018, https://doi.org/10.1016/j.culher.2018.05.004

P. B. Siegel, “Gamma spectroscopy of environmental samples”, American Journal of Physics, vol. 81, no. 5, pp. 381-388, 2013, https://doi.org/10.1119/1.4793595

E. B. Norman, “Nuclear Forensics using Gamma-ray pectroscopy”, EPJ Web Conf., vol. 123, p. 04001, 2016, https://doi.org/10.1051/epjconf/201612304001

National Nuclear Data Center. https://www.nndc.bnl.gov/

International Atomic Energy Agency Nuclear Data Services. https://www-nds.iaea.org/

Laboratoire National Henri Becquerel Atomic and Nuclear data. http://www.lnhb.fr/nuclear-data/module-lara/

D. M. M. Olivares, E. S. Koch, M. V. M. Guevara, and F. G. Velasco, “Determination of uranium and thorium using gamma spectrometry: a pilot study”, Journal of Physics: Conference Series, vol. 975, p. 012035, Mar. 2018, https://doi.org/10.1088/1742-6596/975/1/012035

M. Długosz-Lisiecka, “Comparison of two spectrometric counting modes for fast analysis of selected radionuclides activity”, Journal of Radioanalytical and Nuclear Chemistry, vol. 309, pp. 941-945, 2016, https://doi.org/10.1007/s10967-015-4688-y

G. Gilmore, “Practical Gamma-Ray Spectrometry”, 2nd Edition, Wiley-VCH Verlag, Wenheim, Germany, 2008.

02 Scintillation Detectors. Mirion Technologies (Canberra) Inc., 2017. [Online]. https://mirion.s3.amazonaws.com/cms4_mirion/files/pdf/spec-sheets/csp0232_802_super_spec_2.pdf?1557861234

A. Kadum, and B. Dahmani, “Efficiency calculation of NaI(Tl) 2 × 2 well-shaped detector”, Instruments and Experimental Techniques, vol. 58, pp. 429-434, 2015, https://doi.org/10.1134/S0020441215030070

I. Mouhti, A. Elanique, M. Y. Messous, B. Belhorma, and A. Benahmed, “Validation of a NaI(Tl) and LaBr3(Ce) detector’s models via measurements and Monte Carlo simulations”, Journal of Radiation Research and Applied Sciences, vol. 11, no. 4, pp. 335-339, 2018, https://doi.org/10.1016/j.jrras.2018.06.003

S. Ahmadi, S. Ashrafi, and F. Yazdansetad, “A method to calculate the gamma ray detection efficiency of a cylindrical NaI (Tl) crystal”, Journal of Instrumentation, vol. 13, no. 5, pp. P05019-P05019, May 2018, https://doi.org/10.1088/1748-0221/13/05/p05019

X-Ray Mass Attenuation Coefficients. https://physics.nist.gov/PhysRefData/XrayMassCoef/tab3.html

S. Sadasivan, and V. M. Raghunath, “Intensities of gamma rays in the 232Th decay chain”, Nuclear Instruments and Methods in Physics Research, vol. 196, no. 2, pp. 561-563, 1982, https://doi.org/10.1016/0029-554X(82)90153-7

X-ray Transition Energies Database Main Page. https://physics.nist.gov/PhysRefData/XrayTrans/Html/search.html

M. L. Smith, L. Bignell, D. Alexiev, L. Mo, and J. Harrison, “Evaluation of lead shielding for a gamma-spectroscopy system”, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 589, no. 2, pp. 275-279, 2008, https://doi.org/10.1016/j.nima.2008.02.050

T. C. O’Haver, A Pragmatic Introduction to Signal Processing. Kindle Direct Publishing, 2022.

https://commons.wikimedia.org/wiki/File:Decay_Chain_of_Thorium.svg

https://commons.wikimedia.org/wiki/File:Decay_Chain_of_Uranium-238.svg

Descargas

Los datos de descargas todavía no están disponibles.

Artículos más leídos del mismo autor/a