Radionuclides produced in nuclear reactors and its applications as radiotracers: A review

Authors

DOI:

https://doi.org/10.32685/2590-7468/invapnuclear.1.2017.17

Keywords:

Neutron Flux, Radionuclidic purity, Radiochemical purity, Radionuclide

How to Cite

[1]
D. L. Alonso, V. M. Pabón, G. A. Parrado, and J. C. Parada, “Radionuclides produced in nuclear reactors and its applications as radiotracers: A review”, rev. investig. apl. nucl., no. 1, pp. 6–23, Nov. 2017.

Issue

Section

Articles

Published

2017-11-01

Abstract

A review of the radionuclides produced in nuclear reactors and their applications as radiotracers in hydrology, agriculture, industry, medicine, the environment and research in general are presented, both in Latin America and those produced in Colombia since 1965 with the Research Nuclear Reactor IAN-R1, so that under that view it is possible to reactivate the production of radionuclides in the country as 198Au, 24Na, 32P and 82Br.

References

-[1]. IAEA, Nuclear Technology for a Sustainable Future, Vienna: IAEA, 2012.

-[2] I. Cohen y J. Furnari, “Las Tendencias Modernas de la Radioquímica y sus Aplicaciones,” Revista Química Viva, vol. 11, n° 2, 2012. Disponible: http://www.quimicaviva.qb.fcen.uba.ar/v11n2/cohen.html [Último acceso: 15 marzo 2017].

-[3] V.M. Pabón, Radioquímica Básica, Bogotá, Universidad Distrital Francisco José de Caldas (en edición), 2017.

-[4] H. Múnera, Tecnología nuclear no médica en Colombia. Pasado, presente y futuro, Bogotá: Tecnicontrol S.A., 2011.

-[5] W. Loveland, D. Morrissey y G. Seaborg, Modern Nuclear Chemistry, New Jersey: John Wiley & Sons, 2005.

-[6] IAEA, Use of radiotracers to study surface water processes, IAEA-TECDOC-1760, 2015, p. 4-64.

-[7] T. Ruth, “The uses of radiotracers in the life sciences,” Reports on Progress in Physics, vol. 72, n° 1, 2009.

-[8] G. Choppin, J-O Liljenzin and J. Rydberg, Radiochemistry and Nuclear Chemistry, Amsterdam: Academic Press, Fourth edition, 2013, p. 513-590.

-[9] IAEA, Applications of Research Reactors, Nuclear Energy Series No. NP-T-5.3, 2014, p. 28-37.

-[10] IAEA, The applications of research reactors, IAEA-TECDOC-1234, 2001, p. 17-19.

-[11] V. Raina et al., “Multipurpose research reactor,” Nuclear Engineering and Design, 236, p. 770-783, 2006.

-[12] A. Mushtaq, “Producing radioisotopes in power reactors,” J Radioanal Nucl Chem, 292, p. 793-802, 2012.

-[13] S. Sukadev y S. Sonali, “Production and Applications of Radioisotopes,” Physics Education, p. 5-11, 2006.

-[14] INDC - International Nuclear Data Committee, Proceedings of the IAEA Consultants’ Meeting on data requirements for Medical Radioisotope Production, IAEA, 1988, p. 37.

-[15] R. Dahl, T. Chaly y R. Matacchieri, “Production of radioisotopes at North Shore University Hospital,” Nuclear Instruments and Methods in Physics Research B, 99, p. 817-820, 1995.

-[16] K. Matthews et al. The Workshop on Signatures of Medical and Industrial Isotope Production - WOSMIP, Strassoldo, Italy, 1-3 July 2009. Journal of Environmental Radioactivity, 110, p. 1-6, 2012.

-[17] G. Ehrhardt, A. Ketring y L. Ayres, “Reactorproduced radionuclides at the University of Missouri Research Reactor,” Appl. Radiat. Isot., 49, p. 295-297, 1998.

-[18] F. Knapp et al., “Production of therapeutic radioisotopes in the ORNL High Flux Isotope Reactor (HFIR) for applications in nuclear medicine, oncology and interventional cardiology,” J. Radioanal. Nucl. Chem., 263, p. 503-509, 2005.

-[19] M. Venkatesh y S. Chakraborty, Production of therapeutic radionuclides in medium flux Research Reactors, p. 285- 298. En: Trends in Radiopharmaceuticals (ISTR-2005), Vienna, International Atomic Energy Agency, Vol. 1, 2007.

-[20] V. Le, “Specific Radioactivity of Neutron Induced Radioisotopes: Assessment Methods and Application for Medically Useful 177Lu Production as a Case,” Molecules, 16, p. 818-846, 2011.

-[21] Nuclear Energy Agency - NEA, Beneficial uses and production of isotopes, 2004 update, Paris, OECD, No. 5293, 2005, p. 9-36.

-[22] IAEA, Radiotracer residence time distribution method for industrial and environmental applications, Training Course Series No. 31, 2008, p. 57-144.

-[23] L. Bezzola, S. López y N. Bárbaro, “Effectiveness of different phosphatic fertilizers measured using labelled superphosphate and phosphorus taken up by plants,” Nutrient Cycling in Agroecosystems, 39, vol. 1, p. 31-37, 1994.

-[24] A. Asfary, R. Al-Merey y M. Al-Hameish, “Fractionation of applied 32P labeled TSP in calcareous soils,” Plant & Soil, 264, p. 171-183, 2004.

-[25] B. Erenoglu et al., “Uptake and transport of foliar applied zinc (65Zn) in bread and durum wheat cultivars differing in zinc eficiency,” Plant & Soil, 241, vol. 2, p. 251-257, 2002.

-[26] G. Miller et al., “Absorption and translocation of 59Fe and 14C-rhodotorulate in iron-stressed tomato,” Journal of Plant Nutrition, 13, vol. 2, p. 201-214, 1990.

-[27] N. Kobayashi et al., “Application of 28Mg for characterization of Mg uptake in rice seedling under different pH conditions,” J Radioanal Nucl Chem, 296, vol. 1, p. 531-534, 2013.

-[28] N. Longnecker y A. Robson, Distribution and Transport of Zinc in Plants, In: A. Robson, (ed.), Zinc in soils and plants, Australia: Kluwer Academic Publishers, 1993, p. 79-89.

-[29] Z. Kolar, T. Verburg y H. van Dijk, Radiotracer study of phosphate exchange between whey and casein micelles in cow’s milk, 13th Radiochemical Conference. Booklet of Abstracts, Jachymov, 1998, p. 343-355.

-[30] J. Pernía et al., Aplicación de técnicas especiales al estudio hidrológico de zonas de baja permeabilidad: Isótopos y Trazadores, Madrid: Instituto Tecnológico GeoMinero de España, p. 189-365, 1991.

-[31] S.M. Rao, Practical Isotope Hydrology, New Delhi: New India Publishing Agency, p. 23-163, 2006.

-[32] IAEA, Radiotracer technology as applied to industry, Final report of a co-ordinated research project 1997-2000, IAEA-TECDOC-1262, 2001, p. 2-91.

-[33] IAEA, Radiation protection and the Management of Radioactive Waste in the oil and gas industry, IAEA, Safety Reports Series No. 34, 2003, p. 38-49.

-[34] J. Kónya y N. Nagy, Radio and Nuclear Chemistry, London: Elsevier Inc., 1st Ed., p. 200-350, 2012.

-[35] J.C. Parada y D.M. Murcia, La fuente isotópica 241Am-Be como medio para la síntesis de los radiotrazadores cloruro aúrico de trioctil y tridodecilamina, Tesis: Universidad Distrital, 2008, 153 p.

-[36] IAEA, Radiotracer Applications in Industry - A Guidebook, Technical Reports Series No. 423, 2004, p. 7-270.

-[37] IAEA, Application of radiotracer techniques for interwell studies, Radiation Technology Series No. 3, 2012, p. 8-86.

-[38] S. Jung et al., “Preparation of radioactive core-shell type 198Au@SiO2 nanoparticles as a radiotracer for industrial process applications,” Applied Radiation and Isotopes, 68, p. 1025-1029, 2010.

-[39] J. Adelstein y F. Manning, Isotopes for Medicine and the Life Sciences, Washington: National Academic Press, 1995, p. 35-52. Disponible: https://www.nap.edu/catalog/4818/isotopes-formedicine-and-the-life-sciences [Último acceso: 15 de marzo 2017].

-[40] M. Rennie, “An introduction to the use of tracers in nutrition and metabolism,” Proc Nutr Soc., 58, vol. 4, p. 935-944, 1999.

-[41] IAEA, Research Reactor Database, 2016. Disponible: https://nucleus.iaea.org/RRDB/RR/ReactorSearch.aspx?rf=1 [Último acceso: 15 de marzo 2017].

-[42] B. Zhuikov, “Production of medical radionuclides in Russia: Status and future - a review,” Applied Radiation and Isotopes, 84, p. 48-56, 2014.

-[43] National Academies of Sciences, Engineering, and Medicine, Molybdenum-99 for Medical Imaging. Washington: The National Academies Press, 2016, p. 51-86. Disponible: https://www.nap.edu/read/23563/chapter/6#85 [Último acceso: 15 de marzo 2017].

-[44] IAEA, Nuclear Technology Review 2010, Report GC(54)/INF/3, 2010. Disponible: https://www.iaea.org/About/Policy/GC/GC54/GC54InfDocuments/English/gc54inf-3-att7_en.pdf [Último acceso: 15 de marzo 2017].

-[45] OIEA, Informe Final: Producción y usos de radioisótopos producidos en Reactores de Investigación en América Latina y el Caribe, OIEA, Proyecto de Cooperación Técnica RLA/0/037ARCAL CXIX, 2013, 28 p.

-[46] R. De Dicco, Breve historia de los Reactores Nucleares de Investigación y Producción de Radioisótopos de la CNEA, Buenos Aires: Centro Latinoamericano de Investigaciones Científicas y Técnicas, 60 p., 2013.

-[47] P. Cristini et al., Actividades de producción de radioisótopos por fisión en la Argentina, Memorias del X Congreso Regional Latinoamericano IRPA de Protección y Seguridad Radiológica, Buenos Aires, 2015, 12 p.

-[48] CNEA, Radioisótopos para el desarrollo nacional, Buenos Aires: CNEA, 2015, p. 51-52. Disponible: http://www.cnea.gov.ar/sites/default/files/05-Radiosotopos.pdf [Último acceso: 15 de marzo 2017].

-[49] CNEA, Memoria y Balance 2015, Buenos Aires: CRE Gráfica S.A., 2016, p. 39-59. Disponible: http://www.cnea.gov.ar/sites/default/files/Memoria-Balance-2015.pdf [Último acceso: 15 de marzo 2017].

-[50] INVAP, RA-6 de Argentina. Disponible: http://www.invap.com.ar/es/area-nuclear-de-invap/proyectos/reactores-ra6-de-argentina.html [Último acceso: 15 de marzo 2017].

-[51] ININ, “Aplicaciones del TRIGA Mark III,” Revista Contacto Nuclear, 51, Vol. 27, p. 35-38, 2008.

-[52] ININ, Contribuciones del Instituto Nacional de Investigaciones Nucleares al avance de la Ciencia y la Tecnología en México, Edición Conmemorativa, Ciudad de México: ININ, 2010, p. 67-84.

-[53] J. Ortega, “Nueva Planta de Producción de Radioisótopos del ININ,” Revista Contacto Nuclear, 29, vol. 7, p. 12-15, 2002.

-[54] J. Vizuet, J. Reyes y G. Molina, Estudio de detección de fugas mediante trazadores en una planta embotelladora en México, International congress on radiological protection, 4, p. 11, 2005.

-[55] R. Radicella, “El Proyecto Perú,” Revista de la Comisión Nacional de Energía Atómica – CNEA, p. 5-9, 2008 Disponible: http://www.cnea.gov.ar/sites/default/files/peru.pdf [Último acceso: 15 de marzo 2017].

-[56] IPEN, Informe Cientíco Tecnológico 2010, Lima: IPEN, 2011, p. 111-129.

-[57] IPEN, IPEN 60 anos irradiando qualidade de vida, Revista IPEN 60 anos, Triunfal Gráfica e Editora, p. 22-25, 2016. Disponible: https://issuu.com/anapaula.freire/docs/ipen_60_anos [Último acceso: 15 de marzo 2017].

-[58] R. Saxena, The IEA-R1 Research Reactor: 50 years of operating experience and utilization for research, teaching and radioisotopes production, International Conference on Research Reactors, Sydney, 2007.

-[59] M. Chandía et al., “Experiencia Chilena en la producción de [18F]-FDG con 18F de Reactor,” Nucleotécnica, año 19, Nº 33, p. 53-63, 1999.

-[60] P. Sierralta et al., “Distribución biológica del 18F-Fluordeoxiglucosa utilizando [18F] producido en Reactor,” Nucleotécnica, año 22, nº 36, p. 7-13, 2002.

-[61] L. Pinto y N. Godoy, “The 166Ho and 177Lu production for nuclear medicine applications at the RECH-1,” Nucleotécnica, año 22, nº 36, p. 133, 2002.

-[62] IAN/INEA, Libro de Registro de Operación del Reactor IAN-R1, Libros 1 al 10, Bogotá: INEA, 1965-1998.

-[63] E. Sandoval, “Experimento de criticidad con el Reactor de enseñanza e investigación IAN-R1,” Revista Colombiana de Física, 2, vol. 1-2, p. 22-27, 1966.

-[64] J. Toro, Reactor IAN-RI del Instituto de Asuntos Nucleares de Colombia - 6 años de operación, Washington, D.C, International Atomic Energy Agency, Inter-American Nuclear Energy Commission, 1972, p. 253-262. Disponible: http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/04/059/4059286.pdf?r=1 [Último acceso: 15 de marzo 2017].

-[65] J. Sarta, L. Castiblanco y J. Razvi, Conversion of the IAN-R1 Reactor from MTR HEU Fuel to TRIGA LEU Fuel, Proceeding of 1997 International Meeting on Reduced Enrichment for Research and Test Reactors, Jackson Hole, p. 1-6, 1997.

-[66] I. Concha, Neutronic calculations for the IAN-R1 Research Reactor core conversion, Proceedings of the 1988 International Meeting on Reduced Enrichment for Research and test reactor, San Diego, p. 358-371, 1988.

-[67] A. Spin, R. Chesworth y G. West, Power upgrade and conversion of the Colombia R-l Reactor to TRIGALEU fuel, Proceedings of the 1990 International Meeting on Reduced Enrichment for Research and test Reactors, Newport, p. 368-385, 1990.

-[68] IAEA, History, Development and Future of TRIGA Research Reactors, Vienna, Technical Reports Series No. 482, p. 46-69, 2016.

-[69] E. Páez y S. Nassif, Producción de radioisótopos en el Reactor IAN-R1, Bogotá: IAN, IAN-Q-6, 1966.

-[70] J. Toro y H. Múnera, Cálculos y nomogramas para la producción de radioisótopos en reactores, Bogotá: IAN-ARI-2, 1969.

-[71] A. Spin et al., “Reactor nuclear IAN-R1: Características técnicas y aplicaciones,” Nucleares, 5-6, vol. 3, p. 57-64, 1988.

-[72] IAN, Informe de labores 1988, Bogotá: IAN, 1989.

-[73] IAN, Informe de labores 1987, Bogotá: IAN, 1988.

-[74] J. Ahumada y A. Spin, Modificación del Reactor IAN-R1, International symposium on research reactor safety operations and modifications, IAEA-SM-310/32, Chalk River, 1989. Disponible: http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/22/047/22047708.pdf [Último acceso: 15 de marzo 2017].

-[75] IAN, Instituto de Asuntos Nucleares: Ciencia y tecnología para el progreso 30 años, Bogotá: IAN, 1989, p. 36-205.

-[76] A. Plata, H. Múnera y C. Rodríguez, Estudio de los acuíferos de la isla de San Andrés, empleando técnicas nucleares, Bogotá: IAN-ARI-28, Informe 2, 1972.

-[77] L. Sánchez, Estudio de filtraciones de la presa de Guatavita utilizando trazadores radiactivos, Bogotá: IAN, No. 13, 1978.

-[78] L. Sánchez et al., “Determinación de filtraciones en el dique auxiliar del embalse de Chingaza utilizando trazadores radiactivos,” Nucleares, 1, vol. 1, p. 29-33, 1986.

-[79] IAN, Informe de labores 1985, Bogotá: IAN, 1986.

-[80] O. Bastidas, S. Urquiaga y A. Álvarez, “Influencia de la época de aplicación del 32P-Superfosfato triple en la eficiencia de la fertilización fosfatada y en la productividad de la papa (Solanum tuberosum L),” Nucleares, 2, vol. 1, p. 11-18, 1986.

-[81] IAN, Informe de labores 1984, Bogotá: IAN, 1985.

-[82] R.H. Espinosa, 198Au como radiotrazador en la industria del petróleo, Bogotá: IAN, 1989.

-[83] H. Múnera, Aplicaciones de radioisótopos en la industria del petróleo en Colombia, Bogotá: IAN, 1971, p. 52.

-[84] M.A. Martínez y G.Y. Rodríguez, Obtención de un compuesto de Au-198 miscible en petróleo como radiotrazador industrial, Tesis: Universidad Distrital Francisco José de Caldas, 1991, 79 p.

-[85] J. Sarta y L. Castiblanco, Neutronic calculations in core conversion of the IAN-R1 research reactor from MTR HEU to TRIGA LEU fuel, International meeting on Reduced Enrichment for Research and Test Reactors, Chicago, p. 1-7, 2003.

-[86] T. Rivero, “El ININ contribuye a la puesta en operación del Reactor Nuclear Colombiano,” Revista Contacto Nuclear, 42, vol. 28, p. 4-6, 2005.

-[87] A. Mesquita, R. do Prado Souza y T. Rivero, IAEA Expert Missions in the recommissioning of the IAN-R1 TRIGA research reactor, 3rd World TRIGA Users Conference, Belo Horizonte, p. 1-6, 2006.

-[88] D.L. Alonso, Factibilidad de síntesis del 198Au con la fuente 241Am-Be y del radiotrazador sulfitoaurato de sodio, Tesis: Universidad Distrital Francisco José de Caldas, 2007.

-[89] IAEA, Manual for Reactor Produced Radioisotopes, IAEA-TECDOC 1340, 2003, p. 63-65.

-[90] IAEA, Radioisotope handling facilities and automation of radioisotope production, IAEA-TECDOC-1430, 2004, p. 2-40.

Downloads

Download data is not yet available.