Advances in the validation of the delayed neutron counting technique in Colombia for the determination of uranium and thorium in geological samples

Authors

DOI:

https://doi.org/10.32685/2590-7468/invapnuclear.6.2022.652

Keywords:

validation, CNR, uranium, thorium, mass fraction

How to Cite

[1]
A. M. Velásquez, “Advances in the validation of the delayed neutron counting technique in Colombia for the determination of uranium and thorium in geological samples”, rev. investig. apl. nucl., no. 6, pp. 5–20, May 2022.

Issue

Section

Articles

Published

2022-05-18

Abstract

The delayed neutron counting (DNC) technique is a fast, sensitive, analytical method that employs small sample amounts and is nondestructive and independent of matrix effects used for the determination of elements such as uranium and thorium. This paper describes advances in the validation process of the DNC technique used for the analysis of uranium and thorium in samples of geological origin. The criteria established by the laboratory to qualify the technique satisfy the set analytical goals, guaranteeing the determination of uranium mass fraction in a traceable and reliable way. On the other hand, for thorium, the development of other studies and analyses is necessary to guarantee the reliability of mass fraction determination with this methodology. The results obtained allow us to conclude that the validation process of the technique leads to the reliable determination of uranium and thorium, contributing to the increase in existing analytical capacities in the country.

References

M. T. Sellers, D. G. Kelly y E. C. Corcoran, “An automated delayed neutron counting system for mass determinations of special nuclear materials”, Journal of Radioanalytical and Nuclear Chemistry, vol. 291, pp. 281-285, 2012. https://doi.org/10.1007/s10967-011-1223-7

R. J. Rosenberg, “A simple method for the determination of uranium and thorium by delayed neutron counting”, Journal of Radioanalytical Chemistry, vol. 62, pp. 145- 149, 1981. https://doi.org/10.1007/BF02517348

H. Kunzendorf, L. Løvborg y E. Christiansen, “Automated uranium analysis by delayed-neutron counting”, Roskilde: Risø National Laboratory, 1980.

A. F. Porras Ríos, “Importancia de la adecuación de un laboratorio de neutrones retardados en Colombia para la exploración de uranio y protección radiológica en su manipulación y análisis”, Bogotá: Universidad Nacional de Colombia, 2016. Disponible en https://repositorio.unal.edu.co/handle/unal/57568

N. N. Papadopoulos, “Rapid uranium analysis by deleyed neutron counting of neutron activated samples”, Nuclear Research Center “Demokritos”, vol. 153, pp. 1-3, 1985. Disponible en https://inis.iaea.org/collection/NCLCollectionStore/_Public/19/030/19030954.pdf?r=1&r=1

J. H. Moon, S. H. Kim, Y. S. Chung et al., “U determination in environmental samples by delayed neutron activation analysis in Korea”, Journal of Radioanalytical and Nuclear Chemistry, vol. 282, art. 33, 2009. https://doi.org/10.1007/s10967-009-0280-7

D. C. Glasgow, “Delayed neutron activation analysis for safeguards”, Journal of Radioanalytical and Nuclear Chemistry, vol. 276, pp. 207-211, 2008. https://doi.org/10.1007/s10967-007-0434-4

M. W. Echo y E. H. Turk, “Determination of U-235 by delayed neutron counting”, Division of Nuclear Materials Management, AEC, and Chicago Operations Office, AEC, TID-7531. parte 1, pp. 153-173, 1957.

G. Bentoumi, R. B. Rogge, M. T. Andrews et al., “A novel in-beam delayed neutron counting technique for cha racterization of special nuclear materials”, IEEE Transactions on Nuclear Science, vol. 63, n.° 6, pp. 2807-2814, 2016. https://doi.org/10.1109/TNS.2016.2624146

G. I. Khalil y C. M. Buczko, “Simultaneous determination of U and Th by delayed fission neutron technique based on neutron generator”, Journal of Radioanalytical and Nuclear Chemistry, vol. 95, pp. 101-110, 1985. https://doi.org/10.1007/BF02165399

N. K. Mumba, L. Vas y C. M. Buczko, “Uranium and thorium analyses by delayed fission neutron counting technique using a small neutron generator”, Journal of Radioanalytical and Nuclear Chemistry, vol. 95, pp. 311- 322, 1985. https://doi.org/10.1007/BF02168028

M. J. A. Armelin y M. B. A. Vasconcellos, “An evaluation of the delayed neutron counting method for simultaneous analysis of uranium and thorium and for 235U/238U isotopic ratio determination”, Journal of Radioanalytical and Nuclear Chemistry, vol. 100, pp. 37-47, 1986. https://doi.org/10.1007/BF02036497

H. Kunzendorf y L. Løvborg, “Elemental interferences in the analysis of uranium by delayed-neutron counting”, Developments in Economic Geology, vol. 15, pp. 583-595, 1981. https://doi.org/10.1016/B978-0-444-42012-1.50041-6

F. F. Dyer, J. F. Emery y G. W. Leddicotte, “A comprehensive study of the neutron activation analysis of uranium by delayed neutron counting”, OAK Ridge Natl. Lab. ORNL-3342, pp. 1-68, 1962.

S. Fakhi, J. M. Paulus, S. Bouhlassa et al., “Analysis of uranium using delayed neutron emission”, Journal of Radioanalytical and Nuclear Chemistry, vol. 249, pp. 565-567, 2001. https://doi.org/10.1023/A:1013238029752

D. Mellow, D. J. Thomas, M. J. Joyce et al., “The replacement of cadmium as a thermal neutron filter”, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 577, n.° 3, pp. 690-695, 2007. https://doi.org/10.1016/j.nima.2007.05.001

M. Anvia y S. A. Brown, “Correction methods for uranium analysis by DNAA”, Journal of Radioanalytical and Nuclear Chemistry, vol. 311, pp. 1453-1458, 2017. https://doi.org/10.1007/s10967-016-5105-x

S. M. Eriksson, E. A. Mackey, R. M. Lindstrom et al., “Delayed-neutron activation analysis at NIST”, Journal of Radioanalytical and Nuclear Chemistry, vol. 298, pp. 1819-1822, 2013. https://doi.org/10.1007/s10967-013-2568-x

R. Kapsimalis, D. Glasgow, B. Anderson et al., “The simultaneous determination of 235U and 239Pu using delayed neutron activation analysis”, Journal of Radioanalytical and Nuclear Chemistry, vol. 298, pp. 1721-1726, 2013. https://doi.org/10.1007/s10967-013-2745-y

N. Ozturk, T. Akyuz y A. Y. Erkol, “Determination of uranium and thorium in Eskisehir-Beylikahir ore samples by delayed neutron counting technique”, Journal of Radioanalytical and Nuclear Chemistry, vol. 201, pp. 439-446, 1995. https://doi.org/10.1007/BF02164220

C. Xiao, G. Yuan, X. Jin et al., “Delayed neutron counting at CIAE”, Journal of Radioanalytical and Nuclear Chemistry, vol. 307, pp. 1657-1659, 2016. https://doi.org/10.1007/s10967-015-4541-3

C. Xiao, Y. Yao, X. Jin et al., “Application of delayed neutron counting at CIAE”, Journal of Radioanalytical and Nuclear Chemistry, vol. 312, pp. 711-715, 2017. https://doi.org/10.1007/s10967-017-5215-0

M. T. Andrews, E. C. Corcoran, J. T. Goorley et al., “A system for the measurement of delayed neutrons and gammas from special nuclear materials”, Journal of Radioanalytical and Nuclear Chemistry, vol. 303, pp. 2431-2437, 2015. https://doi.org/10.1007/s10967-014-3786-6

International Organization for Standardization – ISO, “Requisitos generales para la competencia de los laboratorios de ensayo y calibración”, ISO/IEC17025:2017, 2017. Disponible en https://www.iso.org/obp/ui/#iso:std:iso-iec:17025:ed-3:v2:es

O. A. Sierra, K. G. Núñez, F. Nelson Acero et al., “Implementación del método del triple monitor para la caracterización del flujo neutrónico del reactor nuclear de investigación IAN-R1”, Revista Investigaciones y Aplicaciones Nucleares, n.° 2, pp. 35-42, 2018. https://doi.org/10.32685/2590-7468/invapnuclear.2.2018.56

International Atomic Energy Agency, “Preparation of g-ray Spectrometry Reference Materials RGU-1, RTh-1 and RGK-1”, Report-IAEA/RL/148, Viena, 1987. Disponible en https://inis.iaea.org/collection/NCLCollectionStore/_Public/18/088/18088420.pdf

W. Haizhou, “Certificate of certified reference materials”, China National Analysis Center for Iron and Steel, Beijing, NCS DC 73301-NCS DC 73306, WSC ISO9001, 2014. Dis ponible en https://assets.lgcstandards.com/sys-master%-2Fpdfs%2Fha1%2Fh13%2F10137397428254%2FCOA_NCS+DC73306_ST-WB-CERT-2216422-1-1-1.PDF

C. A. González y S. J. Choquette, “Certificate of analysis standard reference material - 2711a”, National Institute of Standards and Technology, 2018. Disponible en https://www-s.nist.gov/srmors/certificates/2711A.pdf

Y. Cantillo, “Standard and reference materials for environmental science”, NOAA Technical Memorandum NOS ORCA 94, Silver Spring, Maryland, 1995. Disponible en https://repository.library.noaa.gov/view/noaa/2924

Eurolab España, P. P. Morillas y colaboradores, “Guía Eurachem: La adecuación al uso de los métodos analíticos – Una guía de laboratorio para la validación de métodos y temas relacionados”, 1ª ed., 2016. Disponible en https://www.eurachem.org/images/stories/Guides/pdf/MV_guide_2nd_ed_ES.pdf

U.S. EPA., “Method 200.8: Determination of trace elements in waters and wastes by inductively coupled plasma- Mass spectrometry”, Revision 5.4. Cincinnati, OH, 1994. Disponible en https://www.epa.gov/sites/default/files/2015-06/documents/epa-200.8.pdf

I. Taverniers, M. De Loose y E. van Bockstaele, “Trends in quality in the analytical laboratory. II. Analytical method validation and quality assurance”, TrAC Trends in Analytical Chemistry, vol. 23, n.° 8, pp. 535-552, 2004. https://doi.org/10.1016/j.trac.2004.04.001

H. Steiner y W. J. Youden, “Statistical manual of the Association of Official Analytical Chemists”, AOAC International (Association of Official Analytical Chemists), Maryland, 1997.

International Organization for Standardization – ISO, “Accuracy (trueness and precision) of measurement methods and results — Part 2: Basic method for the determination of repeatability and reproducibility of a standard measurement method”, ISO 5725-2, 2019. Disponible en https://www.iso.org/standard/69419.html

M. Charles, “UNSCEAR Report 2000: Sources and effects of ionizing radiation”, Journal of Radiological Protection, vol. 21, n.° 1, pp. 83-85, 2001. https://doi.org/10.1088/0952-4746/21/1/609

R. B. Dean y W. J. Dixon, “Simplified statistics for small numbers of observations”, Analytical Chemistry, vol. 23, n.° 4, pp. 636-638, 1951. https://doi.org/10.1021/ac60052a025

Downloads

Download data is not yet available.

Most read articles by the same author(s)