Implementación del laboratorio de termocronología de baja temperatura: Intercomparación del Servicio Geológico Colombiano - Universidad Grenoble Alpes
DOI:
https://doi.org/10.32685/2590-7468/invapnuclear.1.2017.20Palabras clave:
Apatitos, Circones, Colombia, Datación, Huellas de fisión, TermocronologíaDescargas
Cómo citar
Número
Sección
Publicado
Resumen
Este artículo contiene una descripción histórica del proceso de implementación del Laboratorio de Termocronología de baja temperatura en el Servicio Geológico Colombiano; el cual está enfocado en datación termocronológica por el método de huellas de fisión en apatitos y circones. En este trabajo se describe la metodología aplicada, los resultados del proceso de intercalibración con el Laboratorio ISTerre de la Universidad Joseph Fourier e intercomparación interna de los analistas del Laboratorio del SGC, así como los ensayos de viabilidad y condiciones de irradiación para análisis de huellas de fisión Reactor Nuclear IAN-R1, con el fin de dar a conocer a la comunidad científica las capacidades técnicas del laboratorio y la confiabilidad de los resultados obtenidos.
Referencias bibliográficas
-[1] M. I. Marín et al, Intercalibración de los laboratorios de Huellas de Fisión, Universidad EAFIT-JOSEPH FOURIER-INGEOMINAS, XIII Congreso Colombiano de Geología y XIV Congreso Latinoamericano de Geología, Medellín, Colombia. 2011.
-[2] X. Bustos et al., Comparación de Superficies de Erosión en el Altiplano Antioqueño mediante Geomorfología Cuantitativa: Resultados preliminares. XIII Congreso Colombiano de Geología y XIV Congreso Latinoamericano de Geología, Medellín, Colombia. 2011.
-[3] M. L. Peña, J. Sandoval y Y. Cañón, Laboratorios e Instalaciones de Tecnologías Nucleares y Reactor Nuclear del Servicio Geológico Colombiano, 14th Colombian Geological Congress, Bogotá, Colombia. 2013.
-[4] L. Rayo et al., Resultados irradiaciones para análisis de huellas de fisión, reactor nuclear IAN-R1 del Servicio Geológico Colombiano, 14th Colombian Geological Congress, Bogotá, Colombia. 2013.
-[5] A. Piraquive et al., Syntectonic erosion and exhumation processes in the Western Cordillera of Colombia, evidence from a tectonic stacking zone alongside the Romeral Suture Zone. 14th Colombian Geological Congress, Bogotá, Colombia. 2013.
-[6] C. Urueña et al., Termocronología aplicada al estudio de evolución térmica en cuencas carboníferas (Sinclinal Umbita). XV Congreso Colombiano de Geología, Bucaramanga, Colombia. 2015a.
-[7] C. Urueña et al., Termocronología aplicada en la Exploración de Gas Metano Asociado al Carbón. X Congreso Nacional y V Internacional de Ciencia y Tecnología del Carbón y Combustibles Alternativos – CONICCA 2015, Medellín, Colombia. 2015b.
-[8] S. Amaya, C. Zuluaga and M. Bernet. Tectonic Evolution of the Northern Andes, Colombia: New Age Constrains on the Exhumation of the Santander Massif. Lithos, in review.
-[9] S. Amaya, C. Zuluaga and M. Bernet. Three phases of accelerated exhumation along the Bucaramanga fault in the Cepita area of the south-western Santander Massif, Colombia, Tectonics, in review.
-[10] R. L Fleischer, P. B. Priceand and R. M. Walker, Nuclear Tracks in Solids. Principles and Applications. University of California Press, Berkeley, CA. 1975.
-[11] N. E. Holden, and D.C. Hofman, Spontaneous Fission Half-Lives for Ground-State Nuclides. Pure Appl. Chem, vol. 72, No. 8, pp. 1525-1562, © 2000 IUPAC. 2000.
-[12] R. Donelick, P. B. O’Sullivan, and R. Ketcham, Apatite Fission-Track Analysis: Reviews in Mineralogy & Geochemistry, v. 58, p. 49-94. 2005.
-[13] G. A. Wagner and P. van den Haute, Fission-Track Dating. Netherlands: Solid Earth Sciences Library, Kluwer. Academic Publishers. 1992.
-[14] K. Gallagher, R. Brown and C. Johnson, Fission track analysis and its applications to geological problems. Annual Review Earth Planetary Sciences, 26: 519-72. 1998
-[15] A.J Hurford, and P. F. Green, A user’s guide to fission track dating calibration. Earth Planetary Sciences Letters, 59: 343-354. 1982.
-[16] A.J. Hurford, “Standardization of fission track dating calibration: Recommendation by the Fission Track Working Group of Subcommision on Geochronology,” Chemical Geology (Isotope Geoscience Section), vol. 80: 171 -178. 1990.
-[17] P. W. Reiners and M. T. Brandon, “Using thermochronology to understand orogenic erosion,” Annu. Rev. Earth. Planet. Sci., 34, 419 – 466. 2006.
-[18] M. I. Marín et al., Calibración interlaboratorios de huellas de fisión. Universidad EAFIT - Servicio Geológico Colombiano - Universidad Joseph Fourier, 14th Colombian Geological Congress, Bogotá, Colombia. 2013.
-[19] A.K Ghosh, V. K. Sharma and R. K. Singh, Uplift History of Syenite Rocks of the Sushina Hill, Tamar Porapahar Shear Zone (TPSZ), Purulia: Constraints from Fission-track Ages of Two Cogenetic Minerals. Journal of Geology & Geophysics 5: 245, doi:10.4172/2381-8719.1000245. 2016.
-[20] M. L. Balestrieri, G. Bigazzi and M. Oddone, “The thermal column: a new irradiation position for fission-track dating in the University of Pavia Triga Mark II nuclear reactor,” J. Radioanal. Nucl. Chem, Letters 213 (2):99-108. 1996.