Morphology of the collapse scar of the Chiles Volcano (Colombia-Ecuador border) and geomechanical characterization of rock masses

Authors

DOI:

https://doi.org/10.32685/0120-1425/bol.geol.51.1.2024.714

Keywords:

Collapse scar, rock quality, volcanic edifice, debris avalanche, flank stability, volcanic hazard
Volcán Chiles.  Foto: Paez et al, Boletin Geológico

Downloads

Additional Files

How to Cite

Paez, L. V., Sánchez, J. J., & Castro-Caicedo, Álvaro J. . (2024). Morphology of the collapse scar of the Chiles Volcano (Colombia-Ecuador border) and geomechanical characterization of rock masses . Boletín Geológico, 51(1). https://doi.org/10.32685/0120-1425/bol.geol.51.1.2024.714

Issue

Section

Articles

Published

2024-07-01

Abstract

Chiles Volcano is an active stratovolcano of the Cordillera Occidental in a dormant state built by accumulation of andesitic-dacitic lava flows, which was affected by a large lateral collapse on its northern flank that subsequently generated one or multiple volcanic debris avalanches (VDAs). As a result of the morphological analysis of the collapse scar, it is proposed that this lateral collapse may have been caused by factors unrelated to the volcano's eruptive activity, which impacted the stability of the volcanic structure. This geomorphological study marks a significant step forward in understanding lateral collapses in an area where sedimentological data about the VDAs is extremely limited due not only to the complexity of the topography, but also to the glacial and fluvial processes of the area. The descriptive and geometric analysis of the scar resulting from the collapse indicates that this morphological expression is U-shaped and deep-seated and has the following dimensions: length = 3.0 km, width = 1.6 km, height = 0.8 km, and aperture angle = 31°. Respectively, the area and volume of material involved in the collapse are estimated at 4.0 km2 and 0.5 km3. The geomechanical characterization of the Chiles Volcano rocks was done in five outcrops located on the southern flank applying either the Rock Mass Rating (RMR) or the Geological Strength Index (GSI); additionally, these values obtained in the field were complemented with results from other studies in the area, which encompass the eastern and northern flanks of the volcano. GSI values for columnar, brecciated, and blocky lava flows range between 47–72; 15–65 and 37–57, respectively. Using triaxial tests by the multiple failure state method, the compressive strength of the rock mass was 24.92 MPa; respectively, cohesion and internal friction angle values were 4.21 MPa and 51.95° for peak strength, and 1.52 MPa and 52.4° for residual strength.

References

Bernard, B., Takarada, S., Andrade, D., and Dufresne, A. (2021). Terminology and strategy to describe large volcanic landslides and debris avalanches. In M. Roverato, A. Dufresne, and J. Procter (Ed.), Volcanic Debris Avalanches: from Collapse to Hazard, Advances in Volcanology. Springer. https://doi.org/10.1007/978-3-030-57411-6_3

Bieniawski, Z. (1989). Engineering Rock Mass Classifications: A Complete Manual for Engineers and Geologists in Mining, Civil, and Petroleum Engineering. John Wiley & Sons, Inc., United States.

Bocanegra, L., and Sánchez, J. (2017). Mapa de Fallas de Los Volcanes Chiles-Cerro Negro (Nariño) a Partir de Minería de Datos y Confirmación de Campo. Boletín de Geología, 39(3), 71–86. https://doi.org/10.18273/revbol.v39n3-2017005.

Cai, M., Kaiser, H., Uno, Y., Tasaka, and Minami, M. (2004). Estimation of Rock Mass Deformation Modulus and Strength of Jointed Hard Rock Masses Using the GSI System. International Journal of Rock Mechanics and Mining Sciences, 41(1), 3–19. https://doi.org/10.1016/S1365-1609(03)00025-X

Cortés, G., and Calvache, M. (1996). Investigación sobre la evolución y composición de los volcanes de Colombia: Galeras y volcanes del sur (explanatory memory). INGEOMINAS.

Droux, A., and Delaloye, M. (1996). Petrography and Geochemistry of Plio-Quaternary Calc-Alkaline volcanoes of Southwestern Colombia. Journal of South American Earth Sciences, 9(1-2), 27–41. https://doi.org/10.1016/0895-9811(96)00025-9

Eberhardt, E. (2012). The Hoek – Brown Failure Criterion. Rock Mechanics and Rock Engineering, 45, 981–88. https://doi.org/10.1007/s00603-012-0276-4

Francis, PW., and Wells, GL. (1988). Landsat Thematic Mapper observations of debris avalanche deposits in the Central Andes. Bulletin of Volcanology, 50, 258-278. https://doi.org/10.1007/BF01047488

García, Y., and Sánchez, J. (2019). Contribuciones geológicas al modelo conceptual geotérmico en la región de los volcanes Chiles – Cerro Negro (Colombia-Ecuador). Boletín de Geología, 41(1), 151–71. https://doi.org/10.18273/revbol.v41n1-2019008

Hoek, H., and Brown, E. (1997). Practical estimates of rock mass strength. International Journal of Mechanics and Mining Sciences, 34, 1165-1168. https://doi.org/10.1016/S1365-1609(97)80069-X

Hoek, H., Carranza-Torres, C., and Corkum, B. (2002). Hoek-Brown Failure Criterion – 2002 Edition. Proc. NARMS-TAC Conference, Toronto. https://www.researchgate.net/publication/282250802_Hoek-Brown_failure_criterion_-_2002_Edition

International Society for Rock Mechanics and Rock Engineering (ISRM). (1983). Suggested methods for determining the strength of rock materials in triaxial compression: Revised version. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 20(6), 285–290. https://doi.org/10.1016/0148-9062(83)90598-3

Jasiewicz, J. (2022, July 10). r.convergence - Calculate convergence index. GRASS GIS 7.8.8dev. https://grass.osgeo.org/grass82/manuals/addons/r.convergence.html#:~:text=Convergence%20index%20is%20mean%20(or,10%2F9%20%3D%20-100.

Jerram, D., and Petford, N. (2011). The Field Description of Igneous Rocks. John Wiley & Sons, Ltd., Chichester.

Joya, L. (2013). Estudio de la relación entre la orientación de las fallas y las estructuras de las avalanchas de escombros en volcanes (bachelor tesis). Universidad Nacional de Colombia, Bogotá, Colombia.

Lee, J., and Pottier, E. (2009). Polarimetric Radar Imaging from Basics to Applications. CRC Press, Boca Raton.

Le Maitre, R. W., Streckeisen, A., Zanettin, B., Le Bas, M. J., Bonin, B. and Bateman, P. (eds) (2002). Igneous Rocks: A Classification and Glossary of Terms: Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks. Cambridge University Press. https://doi.org/10.1017/CBO9780511535581

Olaya, V., and Conrad, O. (2009). Chapter 12: Geomorphometry in SAGA. Developments in Soil Science, 33, 293 – 308. https://doi.org/10.1016/S0166-2481(08)00012-3

Parra, E., and Velásquez, M. (2003). Geología de la Plancha 447 Ipiales – 447Bis Tallambí, sheets 447 – 447Bis. Scale 1:100 000. INGEOMINAS.

Perdomo, G., Ardila, R., and Meneses, L. (1986). Estudio geológico para prospección de azufre en el área de Cumbal – Chiles – Mayasquer (Nariño) (bachelor tesis). Universidad Nacional de Colombia, Bogotá, Colombia.

Pinilla, A., Ríos, P., Rodríguez, B., Sánchez, J., Pulgarín, B., Borrero, C., and Roa, H. (2008). El Neógeno Volcánico En El Altiplano Nariñense, Suroccidente Colombiano. Geología Colombiana, 33, 69-78. https://revistas.unal.edu.co/index.php/geocol/article/view/32049

Roverato, M., Di Traglia., D., Procter, J., Paguican, E., and Dufresne, A. (2021). Factors Contributing to Volcano Lateral Collapse. In M. Roverato, A. Dufresne, and J. Procter (Ed.), Volcanic Debris Avalanches: from Collapse to Hazard, Advances in Volcanology. Springer. https://doi.org/10.1007/978-3-030-57411-6_5

RockMass. (2011). Uniaxial compressive strength (σ_c) and deformation modulus of rocks. Available at: https://rockmass.net/files/strength_and_deform_values%20.pdf (Accessed: July 2022).

Mekel, J. (1975). Geological interpretation of radar images. Journal of the Indian Society of Photo-Interpretation, 3, 1–19. https://doi.org/10.1007/BF03007908

Monsalve-Bustamante, M. (2020). The volcanic front in Colombia: Segmentation and recent and historical activity. In J. Gómez, and A.O. Pinilla–Pachon (Ed.), The Geology of Colombia. https://www2.sgc.gov.co/LibroGeologiaColombia/tgc/sgcpubesp38201903.pdf

Moreno, S., Sánchez, J., and Murcia, H. (2021). Evidences of an unknown debris avalanche event (<0.58 Ma), in the active azufral volcano (Nariño, Colombia). Journal of South American Earth Sciences, 107, 103138. https://doi.org/10.1016/j.jsames.2020.103138

National Aeronautics and Space Administration (NASA). (2010). Dataset: © JAXA/METI ALOS PALSAR ALPSRP275270010 2010. Accessed through https://asf.alaska.edu/ June 2022.

National Aeronautics and Space Administration (NASA). (2014). NASA Airborne Research Focuses on Andean Volcanoes. Available at: https://www.nasa.gov/jpl/uavsar/volcanoes-20140527/ (Accessed: July 2022).

National Aeronautics and Space Administration (NASA). (2015). Dataset: UAVSAR, NASA 2015. Retrieved from https://asf.alaska.edu/ June 2022.

Salazar, E., and Bermúdez, R. (1986). Hoja Geológica Tulcán, escala 1:100000. Scale 1:100 000. Instituto de Investigación Geológico y Energético – IIGE.

Seisdedos, J., Ferrer, M., and González de Vallejo., L. (2012). Geological and geomechanical models of the pre-landslide volcanic edifice of Güímar and La Orotava mega-landslides (Tenerife). Journal of Volcanology and Geothermal Research, 239–240, 93-110. https://doi.org/10.1016/j.jvolgeores.2012.06.013

Servicio Geológico Colombiano (SGC). (2021). Generalidades Volcán Chiles. Available at: https://www2.sgc.gov.co/sgc/volcanes/VolcanChiles/Paginas/generalidades-volcan-chiles.aspx. (Accessed March 3, 2021).

Siebert, L. (1984). Large volcanic debris avalanches: characteristics of source areas, deposits, and associated eruptions. Journal of Volcanology and Geothermal Research, 22, 163-197. Elsevier Science Publishers B.V. https://doi.org/10.1016/0377-0273(84)90002-7

Siebert, L., and Roverato, M. (2021). A historical perspective on lateral collapse and debris avalanches. In M. Roverato, A. Dufresne, and J. Procter (Ed.), Volcanic Debris Avalanches: from Collapse to Hazard, Advances in Volcanology. Springer. https://doi.org/10.1007/978-3-030-57411-6_2

Sierra, E. (2015). Determinación del estado de esfuerzos tectónicos en la zona del Complejo Volcánico Chiles- Cerro Negro (bachelor tesis). Escuela Politécnica Nacional, Quito, Ecuador.

Singh, B., and Goel, R. (2011). Geological Strength Index. Engineering Rock Mass Classification, 319–334. https://doi.org/10.1016/B978-0-12-385878-8.00026-4

Taheri, A., and Tani, K. (2009). Developing a generalized multiple-step loading damage model to predict rock behaviour during multiple-step loading triaxial compression test. 17th International Conference on Soil Mechanics and Geotechnical Engineering (Volumes 1, 2, 3 and 4), Egypt. doi:10.3233/978-1-60750-031-5-429

Telenchana, E., Bernard, B., and Hidalgo, S. (2017). Modelo evolutivo del Volcán Chiles. VIII Jornadas en Ciencias de la Tierra, Quito.

Taussi, M., Tardani, D., and Tassi, F. (2023). A conceptual model for the Tufiño-Chiles-Cerro Negro (TCCN) geothermal system (Ecuador-Colombia): New insights into geothermal exploration from chemical and isotopic composition of hydrothermal fluids. Journal of Geochemical Exploration, 249, 107214. https://ui.adsabs.harvard.edu/link_gateway/2023JCExp.24907214T/doi:10.1016/j.gexplo.2023.107214

Thommeret, N., Bailly, J., and Puech, C. (2010). Extraction of thalweg networks from DTMs: application to badlands. Hydrology and Earth System Sciences, 14, 1527–1536. https://doi.org/10.5194/hess-14-1527-2010

Usma, D., Sánchez, J., and Bonilla, G. (2022). Caracterización de alteraciones para exploración geotérmica en el Volcán Chiles, frontera colombo-ecuatoriana. XV Semana Técnica de Geología, Ingeniería geológica y Geociencias, Barranquilla. https://www.researchgate.net/publication/363475731_Caracterizacion_de_alteraciones_para_exploracion_geotermica_en_el_Volcan_Chiles_frontera_colombo-ecuatoriana

van Wyk de Vries, B., and Davies, T. (2015). Chapter 38 - Landslides, Debris Avalanches, and Volcanic Gravitational Deformation. In H. Sigurdsson, B. Houghton, S. McNutt, H. Rymer, and J. Stix (Ed.), The Encyclopedia of Volcanoes. Elsevier. https://doi.org/10.1016/B978-0-12-385938-9.00038-9

Velásquez, M., and Parra, E. (2002). Geología de Las Planchas 447 - Ipiales y 447 BIS – Tallambí (explanatory memory). INGEOMINAS.

Downloads

Download data is not yet available.

Similar Articles

1 2 3 4 5 6 7 8 9 10 11 > >> 

You may also start an advanced similarity search for this article.