Deciphering the modern stress field facies in Costa Rica and vicinity from earthquake focal mechanisms and GNSS support
DOI:
https://doi.org/10.32685/0120-1425/bol.geol.51.1.2024.680Keywords:
focal mechanism, inversion, stress tensor, permutation, stress ordersLicense
Copyright (c) 2024 Servicio Geológico Colombiano
This work is licensed under a Creative Commons Attribution 4.0 International License.
Downloads
How to Cite
Issue
Section
Published
Abstract
A database containing 2547 earthquake focal mechanisms from Costa Rica, southern Nicaragua, and northern Panama is analyzed to model the modern tectonic stress field through inversion. Thirty-three regional stress tensors are derived, revealing the general orientation of the maximum horizontal stress (SH Max) to be sub-parallel to the N 32° E convergence direction of the Cocos plate with the Caribbean plate along the Middle America Trench. A clockwise rotation of approximately ±20° is observed below 30 km depth. Three orders of stress are identified: the first attributed to the absolute motion of the Cocos plate, the second characterized by high magnitude boundary forces from the triple interaction of the Cocos plate with the Caribbean and Nazca plates, and the third due to density contrasts imposed by trench-parallel active volcanic, igneous, and sedimentary mountain ranges. These features, combined with regional faults and their interactions, deflect the local tectonic stress northward. Observed and modelled GNSS data of the NNE-oriented horizontal velocity field correlate well with the direction of interpolated SH Max in the upper layer. These findings along with the local and regional permutations of the stress axes ellipsoid elucidate the interactions of tectonic regimes and their neo-tectonic complications. A detailed 2D-3D scenario is generated, offering realistic seismotectonic boundaries using stress regime categories and the tectonic R' relationship. The results hold significant practical implications for seismic hazard and risk assessment, as well as the exploration and exploitation of natural resources.
References
Angelier, J. (1975). – Sur l’analyse de mesures recueillies dans des sites faillés: l’utilité d’une confrontation entre les méthodes dynamiques et cinématiques. – C.R. Acad. Sci., D, 281, 1805-1808.
Angelier, J. (1984). – Tectonic analysis of fault slip data sets. – J. Geophys. Res., 89 (B7), 5835-5848.
Arcila, M; Muñoz–Martín, A. 2020. Integrated perspective of the present–day stress and strain regime in Colombia from analysis of earthquake focal mechanisms and geodetic data. In: Gómez, J. & Pinilla–Pachon, A.O. (editors), The Geology of Colombia, Volume 4 Quaternary. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 38, p. 549–569. Bogotá. https://doi.org/10.32685/pub.esp.38.2019.17
Arroyo, I., Husen, S. & Flueh, E.R. (2014). The seismogenic zone in the Central Costa Rican Pacific margin: high-quality hypocentres from an amphibious network. International Journal of Earth Sciences, 103: 1747-1764. DOI: 10.1007/s00531-013-0955-8
Arroyo, I. & Linkimer, L. (2021). Geometría de la zona sismogénica interplacas en el Sureste de Costa Rica a la luz de la secuencia sísmica de Golfito del 2018. Geofísica Internacional, 60(1): 51-75.
Bangs, N.L., McIntosh, K.D., Silver, E.A., Kluesner, J.W. & Ranero C.R. (2015). Fluid accumulation along the Costa Rica subduction thrust and development of the seismogenic zone. Journal of Geophysical Research: Solid Earth, 120: 67-86. DOI: 10.1002/2014JB011265
Camacho, E. (2003). Sismotectónica del extremo norte de la Zona de Fractura de Panamá. Tecnociencia, 5(2): 139-152.
Carafa, M; and Barba, S. (2013), The stress field in Europe: optimal orientations with confidence limits, Geophys. J. Int., 193(2), 531-548, doi:10.1093/gji/ggt024.
Carafa,M; Tarabusi, G; Kastelic, V. (2015). SHINE: Web application for determining the horizontal stress orientation. Computers & Geosciences, Volume 74, January 2015, Pages 39-49
Chaves, E; Dubieuf, K; Schwartz, S; Lay, T; Kintner, J. (2017). Aftershocks of the 2012 Mw 7.6 Nicoya, Costa Rica, Earthquake and Mechanics of the Plate Interface. Bulletin of the Seismological Society of America, Vol. 107, No. 3, pp. –, June 2017, doi: 10.1785/0120160283
Carvajal-Soto, Luis; Ito, T; Protti, M; Kimura,H. (2020). Earthquake potential in Costa Rica using three scenarios for the central Costa Rica deformed belt as western boundary of the Panama microplate. Journal of South American Earth Sciences 97 (2020) 102375
Delvaux, D., Moeys, R., Stapel, G., Melnikov, A. & Ermikov, V. (1995). Palaeostress reconstruction and geodynamics of the Baikal region, Central Asia. Part I. Palaeozoic and Mesozoic pre-rift evolution. Tectonophysics, 252: 61-101.
Delvaux, D. & Barth, A. (2010). African stress pattern from formal inversion of focal mechanism data. Tectonophysics, 482(1-4): 105-128.
Delvaux,D.(september 2022). Win-Tensor Software. Available at http://users.skynet.be/damien.delvaux/Tensor/WinTensor/win-tensor_download.html
DeMets, C. (2001). A new estimate for present-day Cocos-Caribbean Plate motion: implications for slip along the Central American volcanic arc. Geophysical Research Letters, 28(21): 4043-4046.
Heidbach, O., Reinecker, J., Tingay, M., Müller, B., Sperner, B., Fuchs, K. & Wenzel, F. (2007). Plate boundary forces are not enough: Second and third-order stress patterns highlighted in the World Stress Map database. Tectonics, 26(6): 1-19. DOI: 10.1029/2007TC002133
Heidbach, O., Rajabi, M., Reiter, K., Ziegler, M. & WSM Team. (2016). World Stress Map Database Release 2016. V. 1.1. GFZ Data Services. Available in https://doi.org/10.5880/WSM.2016.001
Heidbach, O.; Barth, A.; Müller, B.; Reinecker, J.; Stephansson, O.; Tingay, M.; Zang, A. (2016). WSM quality ranking scheme, database description and analysis guidelines for stress indicator. World Stress Map Technical Report 16-01, GFZ German Research Centre for Geosciences. DOI: http://doi.org/10.2312/wsm.2016.001
Heidbach, O., Barth, A., Müller, B., Reinecker, J., Stephasson, O., Tingay, M. & Zang, A. (2016). WSM quality ranking scheme, database description and analysis guidelines for stress indicator. World Stress Map Technical Report 16-01, GFZ German Research Centre for Geosciences. DOI: http://doi.org/10.2312/wsm.2016.001
Heidbach, O., Rajabi, M., Cui, X., Fuchs, K., Müller, B., Reinecker, J., Reiter, K., Tingay, M., Wenzel, F., Xie, F., Ziegler, M.O., Zoback, M.L. & Zoback, M. (2018). The World Stress Map database release 2016: Crustal stress pattern across scales. Tectonophysics, 744: 484-498. https://doi.org/10.1016/j.tecto.2018.07.007
Hu, J. & Angelier, J. (2004). Stress permutations: Three-dimensional distinct element analysis accounts for a common phenomenon in brittle tectonics. Journal of Geophysical Research Atmospheres, 109(9): 1-20. DOI: 10.1029/2003JB002616
Kassaras, I.G. & Kapetanidis, V. (2018). Resolving the Tectonic Stress by the Inversion of Earthquake Focal Mechanisms. Application in the Region of Greece. A Tutorial. In S. D’Amico (Ed.), Moment Tensor Solutions. Springer Natural Hazards. https://doi.org/10.1007/978-3-319-77359-9_19
Karagianni, I., Papazachos, C.B., Scordilis, E.M. & Karakaisis, G.F. (2015). Reviewing the active stress field in Central Asia by using a modified stress tensor approach. Journal of Seismology, 19(2): 541-565.
Lee, J., Hong, T-K. & Chang, C. (2017). Crustal stress field perturbations in the continental margin around the Korean Peninsula and Japanese islands. Tectonophysics, 718: 140-149.
López, A. (1999). Neo-and paleostress partitioning in the SW corner of the Caribbean Plate and its fault reactivation potential (Ph.D Thesis). Universität Tübingen, Tübingen, Germany.
López, A., Marshall, J.S., Chinchilla, A.L., Sak, P.B., Chiesa, S., Meschede, M., Alvarado, G.E., Calderón, M., Gazel, E., Villegas, A. & Barquero, R. (2011). Costa Rica Stress Map: The Sigma Project. 3rd World Stress Map Conference, GFZ, Potsdam.
López, A. (2012). Andersonian and Coulomb stresses in Central Costa Rica and its fault slip tendency potential: new insights into their associated seismic hazard. Geological Society (Special Publications), 367(1): 19-38. DOI: 10.1144/SP367.3
Loveless, J.P., Allmendinger, R.W., Pritchard, M.E. & Gonzalez, G. (2010). Normal and reverse faulting driven by the subduction zone earthquake cycle in the northern Chilean fore arc. Tectonics, 29(TC2001): 1-16. DOI:10.1029/2009TC00246
Linkimer, L; Alvarado, G; Vargas, A. (015). COSTA RICA: Mapas de isosistas de terremotos importantes (1888-2012). Red Sismológica Nacional (UCR-ICE), Área de Amenazas y Auscultación Sismológica y Volcánica.
Lund, B. & Townend, J. (2007). Calculating horizontal stress orientations with full or partial knowledge of the tectonic stress tensor. Geophysical Journal International, 170(3): 1328-1335. DOI: 10.1111/j.1365246X.2007.03468.x
Marshall, J.S., Fisher, D.M., Gardner, T.W., 2000. Kinematics of diffuse faulting across the western Panama block. Tectonics 19, 468–492
Martínez-Garzón, P., Ben-Zion, Y., Abolfathian, N., Kwiatek, G. & Bohnhoff, M. (2016). A refined methodology for stress inversions of earthquake focal mechanisms. Journal of Geophysical Research: Solid Earth, 121: 8666-8687. DOI: 10.1002/2016JB013493
Martínez-Garzón, P; Vavryčuk, V; Kwiatek, G; Bohnhoff, M. (2016). Sensitivity of stress inversion of focal mechanisms to pore pressure changes. Geophysical Research Letters, 43: 8441-8450.
McKenzie, D.P. (1969). The relation between fault plane solutions for earthquakes and the directions of the principal stresses. Bulletin of the Seismological Society of America, 59(2): 591-601.
Michael, A.J. (1984). Determination of stress from slip data: Faults and folds. Journal of Geophysical Research: Solid Earth, 89: 11517–11526.
Michael, A.J. (1987). Use of focal mechanisms to determine stress: A control study. Journal of Geophysical Research: Solid Earth, 92: 357-368.
Montone, P., Mariucci, M.T., Pondrelli, S. & Amato, A. (2004). An improved stress map for Italy and surrounding regions (central Mediterranean). Journal of Geophysical Research, 109(B10410): 1-22. DOI: 10.1029/2003JB002703
Morell, K. D. (2016). Seamount, ridge, and transform subduction in southern Central America. Tectonics, 35: 357-385. DOI: 10.1002/2015TC003950
Okamoto, K.K., Savage, H.M., Cochran, E.S. & Keranen, K.M. (2022). Stress heterogeneity as a driver of aseismic slip during the 2011 Prague, Oklahoma aftershock sequence. Journal of Geophysical Research: Solid Earth, 127(e2022JB024431): 1-15. https://doi.org/10.1029/2022JB024431
Peraldo, G. & Montero, W. (2007). Temblores documentados para el periodo colonial de Costa Rica. Revista Geológica de América Central, 36 Especial: 25-47.
Protti, M., Schwartz, S.Y. & Zandt, G. (1996). Simultaneous inversion for earthquake location and velocity structure beneath central Costa Rica. Bulletin of the Seismological Society of America, 86(1A): 19-31.
Quintero, R. & Güendel, F. (2000). Stress field in Costa Rica, Central America. Journal of Seismology, 4(3): 297-319. DOI: 10.1023/A:1009867405248
Ranero, C.R. & Von Huene, R. (2000). Subduction erosion along the Middle America convergent margin. Nature, 404(6779): 748-752.
Saito, T. & Noda, A. (2022). Mechanically coupled areas on the plate interface in the Nankai trough Japan, and a possible seismic and aseismic rupture scenario for megathrust earthquakes. Journal of Geophysical Research: Solid Earth, 127(e2022JB023992): 1-15. https://doi. org/10.1029/2022JB023992
Von Huene, R., Ranero, C.R., Weinrebe, W. & Hinz, K. (2000). Quaternary convergent margin tectonics of Costa Rica, segmentation of the Cocos Plate, and Central American volcanism. Tectonics, 19(2): 314-334.
Zoback, M. (1992). First- and second-order patterns of stress in the lithosphere: The World Stress Map Project. Journal of Geophysical Research: Solid Earth, 97(B8): 11703-11728. https://doi.org/10.1029/92JB00132