Energy storage in deep salt formations: Geological and geomechanical conditions and potentials with a focus on Latin America
DOI:
https://doi.org/10.32685/0120-1425/bol.geol.51.2.2024.745Keywords:
rock salt, storage potential, underground hydrogen storage, salt cavern design, Colombia, salt cavern operationLicense
Copyright (c) 2024 Servicio Geológico Colombiano
This work is licensed under a Creative Commons Attribution 4.0 International License.
Downloads
How to Cite
Issue
Section
Published
Abstract
The storage of energy in the form of natural gas in deep, artificially created salt caverns is a proven technology. It balances potential imbalances between the supplier (supply and production of natural gas) and the customer (demand and consumption of natural gas), thus ensuring an opti-mal energy supply in times of crisis. From an engineering point of view, rock salt formations are particularly suitable for the storage of natural gas or oil due to their tightness against gases and liquids and the creep behavior of the material.
The goals of global climate policy and the associated reduction of carbon dioxide emissions into the atmosphere demand the sustainable use of artificial caverns for the storage of green hydrogen, which is currently being scientifically monitored in pilot projects. In order to achieve an eco-nomically viable and mechanically safe energy storage, the geological and geomechanical conditions of the salt rocks that support the caverns at great depth must be studied, which requires specialized work both at the laboratory scale and through pilot tests.
In this article, we present the main features required for some well-known salt formations and their potential for the underground storage of hydrogen and compressed air in caverns. To do this, geological and geomechanical boundary conditions for the potential analysis must be defined and, for the specific design and operation of a cavern, evaluated on a case-by-case basis. The storage capacity depends, among other things, on the maximum injection and withdrawal rate, as well as the minimum and maximum pressures to be respected, and the prevailing geological boundary conditions. Particular attention is paid to an overview of salt deposits in Latin America and especially Colombia. The salt deposits near Bogotá and on the Brazilian coast appear to be of interest for a more detailed analysis for underground gas storage in salt caverns. However, a conclusive assessment of the salt deposits requires precise knowledge of the existing geology and the storage needs and possibilities of the respective countries or regions.
References
Babaryka, A., & Benndorf, J. (2023). Ground Subsidence above Salt Caverns for Energy Storage: A Comparison of Predic-tion Methods with Emphasis on Convergence and Asym-metry. Mining, 3(2), 334–346. https://doi.org/10.3390/mining3020020
Bérest, P., Brouard, B., Karimi-Jafari, M., & Réveillère, A. (2020). Maximum admissible pressure in salt caverns used for brine production and hydrocarbon storage. Oil & Gas Science and Technology – Revue D’ifp Energies Nouvelles, 75, Article 76. https://doi.org/10.2516/ogst/2020068
Bérest, P., Djizanne, H., Brouard, B., & Hévin, G. (2013). Ef-fects of a rapid depressurization in a salt cavern. In F. Tan (Ed.), Rock Characterisation, Modelling and Engineering Design Methods (pp. 653–658). CRC Press. https://doi.org/10.1201/b14917-118
Bermudez, J. M., Evangelopoulou, S., & Pavan, F. (2023). Hy-drogen. https://www.iea.org/energy-system/low-emission-fuels/hydrogen
Bundesministerium für Wirtschaft und Klimaschutz der Bundesrepublik Deutschland. (2020). The National Hydrogen Strategy. https://www.bmwk.de/Redaktion/EN/Publikationen/Energie/the-national-hydrogen-strategy.pdf?__blob=publicationFile
Bundesnetzagentur (Ed.). (2023). Rückblick: Gasversorgung im Jahr 2022. https://www.bundesnetzagentur.de/887140
Caglayan, D. G., Weber, N., Heinrichs, H. U., Linßen, J., Robinius, M., Kukla, P. A., & Stolten, D. (2020). Technical potential of salt caverns for hydrogen storage in Europe. In-ternational Journal of Hydrogen Energy, 45(11), 6793–6805. https://doi.org/10.1016/j.ijhydene.2019.12.161
Charnavel, Y. (2022). Understanding Solution Mining. In SMRI Spring 2022 Technical Class: Development of a Cavern Storage Project, Cavern Basics, Rapid City, South Dakota, USA.
Confort, M. J. F. (2018). Past, Present and Perspectives for the Development of Underground Natural Gas Storage in Latin America. In IGU (Chair), 27th World Gas Conference 2018, Washington, DC, USA.
Cyran, K. (2020). Insight Into a Shape of Salt Storage Caverns. Archives of Mining Sciences, 65(2), 363–398. https://doi.org/10.24425/ams.2020.133198
Dias, W., Roehl, D., Mejia, C., & Sotomayor, P. (2023). Cavern integrity for underground hydrogen storage in the Brazilian pre-salt fields. International Journal of Hydrogen Energy, 48(69), 26853–26869. https://doi.org/10.1016/j.ijhydene.2023.03.292
Donadei, S., Fleig, S., Gast, S., Goerne, G., Hölzner, M., Horváth, P. L., Pollok, L., Riesenberg, C., Rokahr, R. B., Schneider, G.‑S., Zachow, R., Zander-Schiebenhöfer, D., & Zapf, D. (2016). Informationssystem Salzstrukturen: Planungsgrundlagen, Auswahlkriterien und Potentialabschätzung für die Errichtung von Salzkavernen zur Speicherung von Erneuerbaren Energien (Wasserstoff und Druckluft) : InSpEE : Sachbericht. https://doi.org/10.2314/GBV:866755853
Donadei, S., Horváth, P. L., Zander-Schiebenhöfer, D., Horváth, B., Kepplinger, J., & Schneider, G.‑S. (2020). Informationssystem Salz: Planungsgrundlagen, Auswahlkriterien und Potenzialabschätzung für die Errichtung von Salzkavernen zur Speicherung von Erneuerbaren Energien (Wasserstoff und Druckluft) - Doppelsalinare und flach lagernde Salzschichten : Teilprojekt: Bewertungskriterien und Potenzialabschätzung : InSpEE DS : Sachbericht. https://doi.org/10.2314/KXP:1735638943
Eradus, D. (2022). The techno-economic feasibility of green hydrogen storage in salt caverns in the dutch north sea [Master Thesis]. TU Delft, Delft. http://resolver.tudelft.nl/uuid:8eb96cf8-2c91-4553-b0cb-a41458f61b5d
EWE AG. (2023). Wasserstoffkaverne ist fertiggestellt. https://www.ewe.com/de/media-center/pressemitteilungen/2023/03/wasserstoffkaverne-ist-fertiggestellt-ewe-ag
Furst, S. L., Doucet, S., Vernant, P., Champollion, C., & Carme, J.‑L. (2021). Monitoring surface deformation of deep salt mining in Vauvert (France), combining InSAR and leveling data for multi-source inversion. Solid Earth, 12(1), 15–34. https://doi.org/10.5194/se-12-15-2021
Garcia, H., & Jimenez, G. (2016). Structural analysis of the Zipaquira Anticline (Eastern Cordillera, Colombia). Boletín De Ciencias De La Tierra, 39, 21–32. https://doi.org/10.15446/rbct.n39.50333
Hampel, A., Herchen, K., Lux, K.‑H., Günther, R.‑M., Salzer, K., Minkley, W., Pudewills, A., Yildirim, S., Rokahr, R. B., Mis-sal, C., Gährken, A., & Stahlmann, J. (2016). Verbundprojekt: Vergleich aktueller Stoffgesetze und Vorgehensweisen anhand von Modellberechnungen zum thermo-mechanischen Verhalten und zur Verheilung von Steinsalz : Synthesebericht : Projektlaufzeit: 01.10.2010-30.09.2016. https://doi.org/10.2314/GBV:88655800X
Horváth, P. L., Mirau, S., Schneider, G.‑S., Bernhardt, H., Weiler, C., Bödeker, J., Wippich, M., Tangermann, T., & Ratigan, J. (2018). Update of SMRI’s Compilation of Worldwide Salt Deposits and Salt Cavern Fields (SMRI Research Report 2017-5).
Juez-Larré, J., van Gessel, S., Dalman, R., Remmelts, G., & Groenenberg, R. (2019). Assessment of underground energy storage potential to support the energy transition in the Netherlands. First Break, 37(7), 57–66. https://doi.org/10.3997/1365-2397.n0039
Karimi-Jafari, M., Bérest, P., & Brouard, B. (2008). Subsidence, Sinkholes and Craters above Salt Caverns. In Solution Min-ing Research Institute (Chair), SMRI Spring 2008 Technical Conference, Porto, Portugal.
Landesamt für Bergbau, Energie und Geologie (2023). Untertage-Gasspeicherung in Deutschland. EEK, 139(11), 41–49. https://doi.org/10.19225/231103
Lankof, L., & Tarkowski, R. (2020). Assessment of the poten-tial for underground hydrogen storage in bedded salt for-mation. International Journal of Hydrogen Energy, 45(38), 19479–19492. https://doi.org/10.1016/j.ijhydene.2020.05.024
Lux, K.‑H. (2009). Design of salt caverns for the storage of natural gas, crude oil and compressed air: Geomechanical aspects of construction, operation and abandonment. In D. J. Evans & R. A. Chadwick (Eds.), Geological Society special publication: Vol. 313. Underground Gas Storage: Worldwide Experiences and Future Development in the UK and Europe (pp. 93–128). Geological Society. https://doi.org/10.1144/SP313.7
Małachowska, A., Łukasik, N., Mioduska, J., & Gębicki, J. (2022). Hydrogen Storage in Geological Formations—The Potential of Salt Caverns. Energies, 15(14), Article 5038. https://doi.org/10.3390/en15145038
Ministerio de Minas y Energía (Ed.). (2021). Colombia's Hydro-gen Roadmap. https://www.minenergia.gov.co/documents/5862/Colombias_Hydrogen_Roadmap_2810.pdf
Misa, R., Sroka, A., Dudek, M., Tajduś, K., & Meyer, S. (2023). Determination of convergence of underground gas storage caverns using non-invasive methodology based on land sur-face subsidence measurement. Journal of Rock Mechanics and Geotechnical Engineering, 15(8), 1944–1950. https://doi.org/10.1016/j.jrmge.2022.11.018
Nationaler Wasserstoffrat. (2021). The role of underground gas storage facilities in the development of a hydrogen market in Germany: Development potential and regulatory frame-work. https://www.wasserstoffrat.de/fileadmin/wasserstoffrat/media/Dokumente/EN/2021-10-29_NWR-Information_Paper_Hydrogen_Storage.pdf
Nieland, J. D. (2008). Salt Cavern Thermodynamics - Compari-son Between Hydrogen, Natural Gas, and Air Storage. In So-lution Mining Research Institute (Chair), SMRI Fall 2008 Technical Conference, Galveston, Texas, USA
Ozarslan, A. (2012). Large-scale hydrogen energy storage in salt caverns. International Journal of Hydrogen Energy, 37(19), 14265–14277. https://doi.org/10.1016/j.ijhydene.2012.07.111
Parravano, V., Teixell, A., & Mora, A. (2015). Influence of salt in the tectonic development of the frontal thrust belt of the eastern Cordillera (Guatiquía area, Colombian Andes). In-terpretation, 3(4), SAA17-SAA27. https://doi.org/10.1190/INT-2015-0011.1
Pischner, M., & Edler, D. (2012). Basic Requirements in Solution Mining for Cavern Construction. In Solution Mining Re-search Institute (Chair), SMRI Fall 2012 Technical Class, Bremen, Germany.
Pollok, L., Gast, S., Hölzner, M., Fleig, S., Riesenberg, C., Ham-mer, J., Goerne, G., Donadei, S., Horváth, P. L., Zander-Schiebenhöfer, D., Zapf, D., Staudtmeister, K., & Rokahr, R. B. (2015). Project InSpEE, Storage Potential for Renewable Energies - Insights into Northern Germany’s Salt Structure Inventory. In Proceedings, The Third Sustainable Earth Sci-ences Conference and Exhibition. EAGE Publications BVNetherlands. https://doi.org/10.3997/2214-4609.201414256
Presse- und Informationsamt der Bundesregierung (Ed.). (2021). Climate Change Act 2021 Intergenerational contract for the climate. https://www.bundesregierung.de/breg-de/schwerpunkte/klimaschutz/climate-change-act-2021-1913970
Röhling, S., Fleig, S., Gast, S., Henneberg, M., Onneken, J., & Ruales, A. (2020). Informationssystem Salz: Planungsgrundlagen, Auswahlkriterien und Potenzialabschätzung für die Errichtung von Salzkavernen zur Speicherung von Erneuerbaren Energien (Wasserstoff und Druckluft) - Doppelsalinare und flach lagernde Salzschichten, Teilprojekt Salz- und Strukturgeologie : Sachbericht : InSpEE DS. https://doi.org/10.2314/KXP:1745666060
Schlichtenmayer, M., & Bannach, A. (2015). Renewable Energy Storage in Salt Caverns - A Comparison of Thermodynam-ics and Permeability between Natural Gas, Air and Hydro-gen - (SMRI Research Report 2015-1).
Staudtmeister, K., & Rokahr, R. B. (1997). Rock mechanical design of storage caverns for natural gas in rock salt mass. International Journal of Rock Mechanics and Mining Sci-ences, 34(3-4), Article 300. https://doi.org/10.1016/S1365-1609(97)00199-8
STORAG ETZEL GmbH. (2024). H2CAST Etzel. https://h2cast.com/de/
Tackie-Otoo, B. N., & Haq, M. B. (2024). A comprehensive review on geo-storage of H2 in salt caverns: Prospect and research advances. Fuel, 356, Article 129609. https://doi.org/10.1016/j.fuel.2023.129609
Tarkowski, R., & Czapowski, G. (2018). Salt domes in Poland – Potential sites for hydrogen storage in caverns. International Journal of Hydrogen Energy, 43(46), 21414–21427. https://doi.org/10.1016/j.ijhydene.2018.09.212
Tarkowski, R., Lankof, L., Luboń, K., & Michalski, J. (2024). Hydrogen storage capacity of salt caverns and deep aqui-fers versus demand for hydrogen storage: A case study of Poland. Applied Energy, 355, Article 122268. https://doi.org/10.1016/j.apenergy.2023.122268
U. S. Energy Information Administration. (2024). Underground Natural Gas Storage Capacity. https://www.eia.gov/dnav/ng/ng_stor_cap_dcu_NUS_a.htm
Warnecke, M., & Röhling, S. (2021). Underground hydrogen storage – Status quo. Zeitschrift Der Deutschen Gesellschaft Für Geowissenschaften, 172(4), 641–659. https://doi.org/10.1127/zdgg/2021/0295
Wippich, M., Künzel, K., Meyer, S., & Zander-Schiebenhöfer, D. (2022). In-situ analysis of cavern convergence and closure in a complex geological and operational setting. In J. H. P. de Bresser (Ed.), The mechanical behavior of salt X: Pro-ceedings of the 10th Conference on the Mechanical Behav-ior of Salt (SALTMECH X), Utrecht, The Netherlands, 06-08 July 2 (pp. 497–506). CRC Press.
Yildirim, S., Zapf, D., & Rokahr, R. B. (2020). Calculation of Infiltration-cracks in the edge zone of Gas Storage Caverns with FLAC3D. In Billaux, Hazzard, Nelson, & Schöpfer (Eds.), 5th International Itasca Symposium. Itasca International, Inc.
Zapf, D., Körner, F., Leuger, B., & Baumgärtel, L. (2024). Modi-fication of the Rock Mechanical Design of Salt Caverns on the Basis of Recent Research. In ARMA (Chair), 58th U.S. Rock Mechanics/Geomechanics Symposium, Golden, Colo-rado, USA.
Zapf, D., Zachow, R., & Staudtmeister, K. (2020). Informationssystem Salz: Planungsgrundlagen, Auswahlkriterien und Potenzialabschätzung für die Errichtung von Salzkavernen zur Speicherung von Erneuerbaren Energien (Wasserstoff und Druckluft) - Doppelsalinare und flach lagernde Salzschichten : InSpEE DS : Teilbericht 03ET6062C. https://doi.org/10.2314/KXP:1736896016