Listvenites: new insights of a hydrothermal system fossilized in Cerro Matoso peridotites, Montelíbano, Córdoba Department, Colombia
DOI:
https://doi.org/10.32685/0120-1425/boletingeo.47.2020.492Palabras clave:
Listvenita, metasomatismo, sistemas hidrotermales, Cerro Matoso, espinelasDescargas
Cómo citar
Número
Sección
Publicado
Resumen
El producto de alteración metasomatica (e.g., carbonation) de peridotitas son listvenitas. Basados en una descripción de los afloramientos en el depósito de lateritas niquelíferas de Cerro Matoso, localizado al NW de Colombia, la composición mineralógica confirmada con XRD y análisis químicos con XRF y WDS/EDS, se redefine una unidad previamente llamada tachyilita como listvenita. Se describen dos tipos de listvenitas; listvenita A con la asociación mineralógica: cuarzo + siderita + filosilicatos + goetita +/- magnetita, y listvenita B con la asociación: siderita + filosilicatos + goetita. Relictos de Cr-espinela, acompañados por Mn-siderita y texturas neoblásticas, indican un origen a partir de peridotitas, en donde Mn-Fe serían aportados por fluidos hidrotermales. Ambientes hidrotermales reductores con fluidos alcalinos y de bajas temperaturas debieron favorecer la formación de listvenitas, que se observan a lo largo de una zona de fracturas orientada WNW-ESE en el Pit-1 de Cerro Matoso. Expuestas a condiciones climáticas quizás desde el Eoceno pero definitivamente desde la última Orogenia Andina, las listvenitas fueron afectadas al igual que todas las rocas en el depósito de Cerro Matoso por intensos procesos de meteorización y lixiviación mineral ocultando el verdadero origen de algunas.
Referencias bibliográficas
Abuamarah, B. A. (2020). Geochemistry and fore-arc evolution of upper mantle peridotites in the Cryogenian Bir Umq ophiolite, Arabian Shield, Saudi Arabia. International Geology Review, 62(5), 630-648. https://doi.org/10.1080/00206814.2019.1652942
Aftabi, A., & Zarrinkoub, M. H. (2013). Petrogeochemistry of listvenite association in metaophiolites of Sahlabad region, eastern Iran: Implications for possible epigenetic Cu-Au ore exploration in metaophiolites. Lithos, 156-159, 186-203. https://doi.org/10.1016/j.lithos.2012.11.006
Ash, C. H., & Arksey, R. L. (1991). The listwaenites-lode gold association in British Columbia. Geological Fieldwork 1989, paper 1990-1991.
Ash, C. H. (2001). Relationship between ophiolites and gold-quartz veins in the North American Cordillera. Bulletin 108. British Columbia, Ministry of Energy and Mines.
Auclair, M., Gauthier, M., Trottier, J., Jébrak, M., & Chartrand, F. (1993). Mineralogy, geochemistry, and paragenesis of the Eastern Metals serpentinite-associated Ni-Cu-Zn deposit, Quebec Appalachians. Economic Geology, 88(1), 123-138. https://doi.org/10.2113/gsecongeo.88.1.123
Aydal, D. (1989). Gold-bearing listwanites in Arac Massif, Kastamonu, Turkey. Terra Nova, 2(1), 43-52. https://doi.org/10.1111/j.1365-3121.1990.tb00035.x
Azer, M. K. (2013). Evolution and economic significance of listwaenites associated with Neoproterozoic ophiolites in South Eastern Desert, Egypt. Geologica Acta, 11(1), 113-128. https://doi.org/10.1344/105.000001777
Barnes, I., O'Neil, J. R., Rapp, J. B., & White, D. E. (1973). Silica-carbonate alteration of serpentine: wall rock alterations in mercury deposits of the California Coast Ranges. Economic Geology, 68(3), 388-398. https://doi.org/10.2113/gsecongeo.68.3.388
Barrero, D. (1974). Metamorfismo regional en el Occidente Colombiano. Simposio sobre ofiolitas Medellín, Colombia, Medellín.
Bates, R., & Jackson, J. (1987). Glossary of Geology (Third Ed.). American Geological Institute.
Boskabadi, A., Pitcairn, I. K., Broman, C., Boyce, A., Teagle, D. A. H., Cooper, M. J., Azer, M. K., Mohamed, F. H., Stern, R. J., & Majka, J. (2017). Carbonate alteration of ophiolitic rocks in the Arabian-Nubian Shield of Egypt: sources and compositions of the carbonating fluid and implications for the formation of Au deposits. International Geology Review, 59(4), 391-419. https://doi.org/10.1080/00206814.2016.1227281
Bucher, K., & Stober, I. (2019). Interaction of Mantle Rocks with Crustal Fluids: Sagvandites of the Scandinavian Caledonides. Journal of Earth Science, 30, 1084-1094. https://doi.org/10.1007/s12583-019-1257-2
Buisson, G., & Leblanc, M. (1987). Gold in mantle peridotites from Upper Proterozoic ophiolites in Arabia, Mali, and Morocco. Economic Geology, 82(8), 2092-2097. https://doi.org/10.2113/gsecongeo.82.8.2091
Capedri, S., & Rossi, A. (1973). Conditions governing the formation of ophicalcites and listwaenites (Central Euboea/ Greece). Bulletin of Geological Society of Greece, 10(2), pp. 78-297.
Castrillón, A. (2013). Determinación de las estructuras tubulares presentes en el Pit 6 en el depósito laterítico de níquel de Cerro Matoso (Master thesis). Universidad Nacional de Colombia.
Castrillón, A. (2019). Carbonatos y otros minerales autigénicos asociados a las lateritas niquelíferas de Cerro Matoso y su posible relación con actividad hidrotermal y reducción de sulfatos (Doctoral Thesis) Universidad Nacional de Colombia.
Dekov, V. M., & Savelli, C. (2004). Hydrothermal activity in the SE Tyrrhenian Sea: an overview of 30 years of research. Marine Geology, 204(1-2), 161-185. https://doi.org/10.1016/S0025-3227(03)00355-4
Demoustier, A. (1995). Contribution ala caractérisation des quartz auriferes de la région de Cabo de Gata, province d'Almería, Espagne. Pétrographie-thermoluminescence-inclusions fluides. Travail de fin d'études, Faculté Polytechnique de Mons.
Demoustier, A., & Castroviejo, R. (1997). Fluid inclusion characterization of the Carneros epithermal ores (Cabo de Gata, Almería, SE Spain): preliminary results. XIV ECROFI (European Current Research on Fluid Inclusions), Nancy, France.
Demoustier, A., Castroviejo, R., & Charlett, J. M. (1998). Clasificación textural del cuarzo epitermal (Au-Ag) de relleno filoniano del area volcánica de Cabo de Gata, Almeria. Boletín Geológico y Minero, 109(5-6), 449-468.
Gahlan, H. A., Azer, M. K., & Asimow, P. D. (2018). On the relative timing of listwaenite formation and chromian spinel equilibration in serpentinites. American Mineralogist, 103(7), 1087-1102. https://doi.org/10.2138/am-2018-6473
Gaudin, A., Decarreau, A., Noack, Y., & Grauby, O. (2005). Clay mineralogy of the nickel laterite ore developed from serpentinised peridotites at Murrin Murrin, Western Australia. Australian Journal of Earth Sciences, 52(2), 231-241. https://doi.org/10.1080/08120090500139406
Gleeson, S., Herrington, R., Durango, J., & Velazquez, C. (2004). The Mineralogy and Geochemistry of the Cerro Matoso S.A. Ni Laterite Deposit, Montelíbano, Córdoba. Economic Geology, 99(6), 1197-1213. https://doi.org/10.2113/gsecongeo.99.6.1197
Gonçalves, C., Fabris, J., & Pacheco Serrano, W. (1999). Chemical and mineralogical analyses of a weathering mantle developing on peridotite of the mining area for nickel in Cerro Matoso, Colombia. Hyperfine Interactions, 122, 171-176. https://doi.org/10.1023/A:1012658009195
Halls, C., & Zhao, R. (1995). Listvenite and related rocks: perspectives on terminology and mineralogy with reference to an occurrence at Cregganbaun, Co. Mayo, Republic of Ireland. Mineralium Deposita, 30(3-4), 303-313. https://doi.org/10.1007/BF00196366
Imamalipour, A., Karimlou, M., & Hajalilo, B. (2018). Geochemical zonality coefficients in the primary halo of Tavreh mercury prospect, northwestern Iran: implications for exploration of listwaenitic type mercury deposits. Geochemistry: loration, Environment, Analysis, 19(4), 347-357. https://doi.org/10.1144/geochem2018-048
Jutras, J., & Geol, P. (2002). Ultramafic nickel-bearing magmas of the Nadaleen river area (106C/3) and associated listwaenites: new exploration targets in Mayo Mining District, Yukon. In D. Emond, & L. Lewis, Exploration and Geological Service Division, Yukon Region, Indian and Northerb Affairs, Canada. Manson Creek Resources Ltda.
Kashkai, M., & Allakverdiev, S. (1965). Listwaenites, their origin and classification. (U. G. Survey, Ed.) Baku, Izdat. Akad, Nauk Azerbaidzhanskoi: Translated by Vi-taliano, D.B.
Kelemen, P. B., & Matter, J. M. (2008). In situ carbonation of peridotite for CO2 storage. PNAS, 105(45), 17295-17300. https://doi.org/10.1073/pnas.0805794105
Kelley, D. S., & Shank, T. M. (2010). Hydrothermal systems: a decade of discovery in slow spreading environments. In P.a. Rona, C.w. Devey, J. Dyment, & B.j. Murton (Eds.), Diversity Of Hydrothermal Systems On Slow-Spreading Ocean Ridges. Agu Geophysical Monograph Series. https://doi.org/10.1029/2010Gm000945
Kim, S-T., Mucci, A., & Taylor, B. E. (2007). Phosphoric acid fractionation factors for calcite and aragonite between 25 and 75 °C: Revisited. Chemical Geology, 246(3-4), 135-146. https://doi.org/10.1016/j.chemgeo.2007.08.005
Kishida, A., & Kerrich, R. (1987). Hydrothermal alteration zoning and gold concentration at the Kerr-Addison Archean lode gold deposit, Kirkland Lake, Ontario. Economic Geology, 82(3), 649-690. https://doi.org/10.2113/gsecongeo.82.3.649
Koc, S., & Kadioglu, Y. K. (1996). Mineralogy, geochemistry, and precious metal content of Karacakaya (Yunusemre-Eskisehir) Listwaenites. Ofioliti, 21(2), 125-130.
Leblanc, M. (1991). Platinum-group elements and gold in ophiolitic complexes: distribution and fractionation from mantle to oceanic floor. In T. Peters, A. Nicolas, & R. Coleman, Ophiolite Genesis and Evolution of the Oceanic Lithosphere. Springer. https://doi.org/10.1007/978-94-011-3358-6_13