Temporal variation in the seismic wave attenuation at Puracé Volcano, Colombia

Authors

DOI:

https://doi.org/10.32685/0120-1425/boletingeo.44.2018.35

Keywords:

Coda Q, seismic wave attenuation, Vp/Vs, seismicity, Puracé volcano, Qp/Qs

How to Cite

Londoño, J. M. (2018). Temporal variation in the seismic wave attenuation at Puracé Volcano, Colombia. Boletín Geológico, (44), 75–88. https://doi.org/10.32685/0120-1425/boletingeo.44.2018.35

Issue

Section

Articles

Published

2018-04-20

Abstract

A seismic wave attenuation study was performed for volcano-tectonic earthquakes at Puracé volcano (PV), Colombia, for the period of 2006-2015 by using the inverse of coda Q (Q-1) of coda waves. A total of 310 high-quality earthquakes were used for the analysis.

The results showed low Q values for PV suggesting high attenuation in this region. Additionally, Q values were related to Vp/Vs data to calculate Qp −1/Qs −1 ratios. Low Qp −1/Qs −1 ratios were found, and they were associated with fluids predominantly in the liquid phase rather than in the gaseous phase located at shallow parts of the PV, which affected the hydrothermal system producing LP and “Tornillo”-type volcano earthquakes. It is inferred that the recent activity of PV is driven by the hydrothermal system, with a small influence from the magmatic system. 

The Qp −1/Qs −1 ratio can be used as a marker for changes in gas content in the hydrothermal system, becoming a useful tool for routine monitoring tasks at PV.

References

Aki, K. y Chouet, B. (1975). Origin of coda waves: source, attenuation and scattering effects. Journal of Geophysical Research, 80, 3322-3342. Doi: 10.1029/ JB080i023p03322.

Alpala, R., Londoño, J., Torres, R. y Cadena, O. (2014). Análisis de posibles fuentes generadoras de eventos sísmicos tipo “tornillo” en el volcán Puracé, Colombia. Informe de investigación. Servicio Geológico Colombiano.

Alparone, S., Andronico, D., Lodato, L. y Sgroi, T. (2003). Relationship between tremor and volcanic activity during the Southeast crater eruption on Mount Etna in early 2000. Journal of Geophysical Research: Solid Earth, 108(B5), 2241. Doi: 10.1029/2002JB001866.

Ambeh, W. y Fairhead, J. (1989). Coda Q estimates in the Mount Cameroon volcanic region, West Africa. Bulletin of the Seismological Society of America, 79(5), 1589-1600.

Bianco, F., Castellano, M., Del Pezzo, E. e Ibáñez, J. (1999). Attenuation of short-period seismic waves at Mt. Vesuvius, Italy. Geophysical Journal International, 138(1), 67-76. Doi:10.1046/j.1365-246x.1999.00868.x.

Chatterjee, S., Pitt, A. e Iyer, H. (1985). Vp/Vs ratios in the Yellowstone National Park region, Wyoming. Journal of Volcanology and Geothermal Research, 26(3-4), 213-230. Doi: 10.1016/0377-0273(85)90057-5.

De Siena, L., Thomas, C., Waite, G., Moran, S. y Klemme, S. (2014). Attenuation and scattering tomography of the deep plumbing system of Mount St. Helens. Journal of Geophysical Research: Solid Earth, 119(11), 8223-8238. Doi: 10.1002/2014JB011372.

Del Pezzo, E., Simini, M. e Ibáñez, J. (1996). Separation of intristic and scattering Q for volcanic areas: A comparison between Etna and Campi Flegrei. Journal of Volcanology and Geothermal Research, 70(3-4), 213- 219. Doi: 10.1016/0377-0273(95)00056-9.

Del Pezzo, E. (2008). Seismic wave scattering in volcanoes. Advances in Geophysics. New York: Academic Press. Doi: 10.1016/S0065-2687(08)00013-7.

Dibble, R. (1974). Volcanic seismology and accompanying activity of Ruapehu Volcano, New Zealand. En Physical Volcanology. Amsterdam: Elsevier.

Espinosa, A. (2001). Erupciones históricas de los volcanes colombianos (1500-1995). Bogotá: Academia Colombiana de Ciencias Exactas, Físicas y Naturales.

Fehler, M., Roberts, P. y Fairbanks, T. (1988) A temporal change in coda wave attenuation observed during an eruption of Mount St. Helens. Journal of Geophysical Research: Solid Earth, 93(B5), 4367-4373. Doi: 10.1029/JB093iB05p04367.

Gao, L. (1992). Physical meaning of coda envelopes. En Volcanic Seismology. Berlin, Heidelberg, New York: Springer.

Giampicolo, E., D’Amico S., Patanè, D. y Gresta, S. (2007). Attenuation and source parameters of shallow microearthquakes at Mt. Etna Volcano, Italy. Bulletin of the Seismological Society of America, 97(1B), 184-197. Doi: 10.1785/0120050252.

Guo, M., Fu, L. y Ba, J. (2009). Comparison of stress-associated coda attenuation and intrinsic attenuation from ultrasonic measurements. Geophysical Journal International, 178(1), 447-456. Doi: 10.1111/j.1365-246X.2009.04159.x.

Gusev, A. y Lemzikob, V. (1985). Properties of scattered elastic waves in the lithosphere of Kamchatka: Parameters and temporal variations. Tectonophysics, 112(1), 137-153. Doi: 10.1016/0040-1951(85)90177-5.

Hermana, M., Harith, Z., Sum, C. y Ghosh, D. (2014). Is the Qp /Qs atrribute better for hydrocarbon prediction? Journal of Applied Sciences, 14(22), 3095-3100. Doi:10.3923/jas.2014.3095.3100.

Ingeominas. (2009a). Boletín de actividad de los volcanes Nevado del Huila, Puracé y Sotará, primer semestre de 2009. Informe interno. Bogotá.

Ingeominas. (2009b). Boletín de actividad de los volcanes Nevado o del Huila, Puracé y Sotará, segundo semestre de 2009. Informe interno. Bogotá.

Ingeominas. (2010). Boletín de actividad de los volcanes Nevado del Huila, Puracé y Sotará, primer semestre de 2010. Informe interno. Bogotá.

Jin, A. y Aki, K. (1986). Temporal change in coda Q before the Tangsham earthquake of 1976 and the Haicheng earthquake of 1975. Journal of Geophysical Research: Solid Earth, 91(B5), 665-673. Doi: 10.1029/JB091iB01p00665.

Kumagai, H., Chouet, B. y Nakano, M. (2002). Temporal evolution of a hydrothermal system in Kusatsu-Shirane Volcano, Japan, inferred from the complex frequencies of long-period events. Journal of Geophysical Research: Solid Earth, 107(B10), ESE 9-1-ESE 9-10. Doi: 10.1029/2001JB000653.

Kvamme, L. y Havskov, J. (1989). Q in Southern Norway. Bulletin of the Seismological Society of America, 79(5), 1575-1588.

Lacruz, J., Ugalde, A., Vargas, C. y Carcolé, E. (2009). Coda-wave attenuation imaging of Galeras Volcano, Colombia. Bulletin of the Seismological Society of America, 99(6), 3510-3515. Doi: 10.1785/0120080366.

Londoño, J. (1996). Temporal change in coda Q at Nevado del Ruiz Volcano, Colombia. Journal of Volcanology and Geothermal Research, 73(1-2), 129-139. Doi: 10.1016/0377-0273(95)00084-4.

Londoño, J. y Sudo, Y. (2002). A warning model based on temporal changes of coda Q for volcanic activity at Nevado del Ruiz Volcano, Colombia. Bulletin of Volcanology, 64(5), 303-315. Doi: 10.1007/s00445-002- 0207-4.

Mavko, G., Dvorkin, J. y Walls, J. (2005). A theoretical estimate of S-wave attenuation in sediment. Conference Paper. Houston: 2005 SEG Annual Meeting.

Monsalve, M. (1996). Depósitos piroclásticos asociados a la actividad explosiva del volcán Puracé actual (Colombia). Manizales: Memorias del VIII Congreso Colombiano de Geología.

Monsalve, M. y Pulgarín, B. (1999). Cadena volcánica de los Coconucos (Colombia): centros eruptivos y producto recientes. Boletín Geológico, 37(1-3), 17-51.

Ortiz, R., Correig, A., Díez, J. y Muñoz, M. (1992). Apparent variation of coda Q in Phlegraean Fields during the bradyseismic crisis of 1982-1984. En Volcanic Seismology. Berlin: Springer-Verlag Berlin Heidelberg.

Phillips, W. y Aki, K. (1986) Site amplification of coda waves from local earthquakes in central California. Bulletin of the Seismological Society of America, 76(3), 627-648.

Prasad, M., Zimmer, M., Berge, P. y Bonner, B. (2004). Laboratory measurements of velocity and attenuation in sediments. Technical report. Society of Exploration Geophysicists. UCRL-JRNL-205155.

Pulli, J. (1984). Attenuation of coda waves in New England. Bulletin of the Seismological Society of America, 74(4), 1149-1166.

Qi, Q., Müller, T. y Pervukhina, M. (2017). Sonic QP /QS ratio as diagnostic tool for shale gas saturation. Geophysics, 82(3), 97-103. Doi: 10.1190/geo2016-0499.1.

Roecker, S., Tucker, B., King, J. y Hatzfeld, D. (1982). Estimates of Q in Central Asia as a function of frequency and depth using the coda of locally recorded earthquakes. Bulletin of the Seismological Society of America, 72(1), 129-149.

Sato, H. (1977). Energy propagation including scattering effects sengle isotropic scattering approximation. Journal of Physics of the Earth, 25(1), 27-41. Doi: 10.4294/jpe1952.25.27.

Servicio Geológico Colombiano (SGC). (2016). Informe anual de actividad de los volcanes del segmento centro de Colombia. Informe interno. Bogotá.

Servicio Geológico Colombiano (SGC). (2017). Informe mensual de actividad de los volcanes del segmento centro de Colombia. Informe interno. Bogotá.

Singh, S. y Herrmann, R. (1983). Regionalization of crustal coda Q in the continental United States. Journal of Geophysical Research: Solid Earth, 88(B1), 527-538. Doi: 10.1029/JB088iB01p00527.

Tusa, G., Malone, S., Giampiccolo, E., Gresta, S. y Musumeci, C. (2004). Attenuation of short-period P-waves at Mount St. Helens. Bulletin of the Seismological Society of America, 94(4), 1441-1455. Doi: 10.1785/012003040.

Vargas, C., Pujades, L. y Caneva, A. (2012). Attenuation structure of the Galeras Volcano, Colombia. Boletín de Geología, 34(2), 149-161.

Wegler, U. y Luhr, B. (2001). Scattering behaviour at Merapi Volcano (Java) relevaled from an active seismic experiment. Geophysical Journal International, 145(3), 579-592. Doi: 10.1046/j.1365-246x.2001.01390.x.

Yamamoto, M. y Sato, H. (2010). Multiple scattering and mode conversion revealed by an active seismic experiment at Asama Volcano, Japan. Journal of Geophysical Research: Solid Earth, 115(B7). Doi: 10.1029/2009JB007109.

Zhang, Z. y Stewart, R. (2007). Seismic attenuation and well log analysis in a heavy oilfield. CREWES Research Report, 19, 1-16. Doi: 10.1190/1.3059251.

Downloads

Download data is not yet available.

Similar Articles

1 2 3 4 5 6 > >> 

You may also start an advanced similarity search for this article.