San José de Guaviare Syenite, Colombia: Repeated Ediacaran intrusions in the northwestern Amazonian Craton

Authors

DOI:

https://doi.org/10.32685/0120-1425/bol.geol.48.1.2021.503

Keywords:

Nepheline Syenite, Neoproterozoic, Intraplate, Geochemistry, Geochronology

How to Cite

Amaya López, C., Marion, Mauricio, Federico Alberto, Jorge Julián, Nilson Francisquini, … Carlos. (2021). San José de Guaviare Syenite, Colombia: Repeated Ediacaran intrusions in the northwestern Amazonian Craton. Boletín Geológico, 48(1), 49–79. https://doi.org/10.32685/0120-1425/bol.geol.48.1.2021.503

Issue

Section

Articles

Published

2021-07-12

Abstract

The Neoproterozoic igneous rocks found in the municipality of San José del Guaviare include several isolated plutonic bodies that protrude from the Phanerozoic sedimentary cover in belts aligned NW-SE. Limited to the Guaviare department, these intrusions stretch from the La Lindosa mountain range to the corregimiento El Capricho. These plutonic bodies consist of nepheline syeni­tes, nepheline monzosyenites, nepheline-bearing alkali-feldspar syenites, syenites, quartz-syenites, quartz-alkali-feldspar syenites, syenogranites, and quartz-rich granitoids, which have been grouped and termed the San José del Guaviare Syenite unit (SJGS).

The intrusion of the unit occurred in the Ediacaran (604 ± 7 Ma and 620.5 ± 7.5 Ma) by mantle-derived alkaline magmas formed in anorogenic settings, most likely in rift-like stretching zones. The silica-subsaturated magma may have reacted with host rocks at the crust level, producing some silica-saturated igneous rocks, such as syenogranites and quartz-syenites, which are found in the El Capricho and Cerritos bodies.

References

Arango, M., Nivia, A., Zapata, G., Giraldo, M., Bermúdez, J., & Albarracín, H. (2011). Geología y geoquímica de la Plancha 350 - San José del Guaviare. Memoria explicativa. Escala 1: 100.000. Servicio Geológico Colombiano.

Arango, M., Zapata, G., & Martens, U. (2012). Caracterización petrográfica, geoquímica y edad de la Sienita Nefelínica de San José del Guaviare. Boletín de Geología, 34(1), 15-26.

Bowie, S., & Simpson, P. (1977). Microscopy: reflected light. In J. Zussman (ed.), Physical methods in determinative mineralogy (2nd ed., pp. 109-165). Academic Press, Ltd.

Caicedo, J. C. (2003). Toma de datos en la libreta de campo. Ingeominas.

Cardona, A., Chew, D., Valencia, V., Bayona, G., Mišković, A., & Ibáñez-Mejía, M. (2010). Grenvillian remnants in the Northern Andes: Rodinian and phanerozoic paleogeographic perspectives. Journal of South American Earth Sciences, 29(1), 92-104. https://doi.org/10.1016/j.jsames.2009.07.011

Cawood, P., & Pisarevsky, S. (2017). Laurentia-Baltica-Amazonia relations during Rodinia assembly. Precambrian Research, 292, 386-397. https://doi.org/10.1016/j.precamres.2017.01.031

Condie, K. (2011). The Supercontinent Cycle. In Earth as an Evolving Planetary System (pp. 317-355). Academic Press. https://doi.org/10.1016/b978-0-12-385227-4.00003-1

Corfu, F., Hanchar, J., Hoskin, P., & Kinny, P. (2003). Atlas of zircon textures. Reviews in Mineralogy and Geochemistry, 53(1), 469-500. https://doi.org/10.2113/0530469

Cox, K., Bell, J., & Pankhurst, R. (1979). The interpretation of igneous rocks (first ed.). Springer Science & Business Media. https://doi.org/10.1007/978-94-017-3373-1

DePaolo, D. (1981). A neodymium and strontium isotopic study of the mesozoic calc-alkaline granitic batholiths of the Sierra Nevada and Peninsular Ranges, California. Journal of Geophysical Research, 86(B11), 10470-10488. https://doi.org/10.1029/JB086iB11p10470

Faure, G., & Mensing, T. (2005). Isotopes: principles and applications (Third). John Wiley & Sons, Inc.

Fitton, J., & Upton, B. (1987). Alkaline igneous rocks. Geological Society Special Publication, 30, 1-568.

Foland, K., Landoll, J., Henderson, C., & Chen, J. (1993). Formation of cogenetic quartz and nepheline syenites. Geochimica et Cosmochimica Acta, 57(3), 697-704. https://doi.org/10.1016/0016-7037(93)90380-F

Franco, J., Muñoz, J., Piraquive, A., Bonilla, A., Amaya, Z., Cramer, T., & Campos, H. (2018). Geochronology of the Nepheline Syenite of el Jordán, Guaviare Colombia, evidences of neoproterozoic-cambrian intraplate magmatism and its implications during Pan-African tectonics in western Gondwana. EGU General Assembly Conference Abstracts. 10861.

Galvis, J., Huguett, A., & Ruge, P. (1979). Geología de la Amazonia Colombiana. Informe No. 1792. Boletín Geológico, 22(3), 1-153.

Gansser, A. (1954). The Guiana Shield (S. America). Geological observations. Eclogae Geologicae Helvetiae, 47(1), 77-112.

Gehrels, G., Valencia, V., & Ruiz, J. (2008). Enhanced precision, accuracy, efficiency, and spatial resolution of U-Pb ages by laser ablation-multicollector-inductively coupled plasma-mass spectrometry. Geochemistry, Geophysics, Geosystems, 9(3), 1-13. http://doi.org/10.1029/2007GC001805

Gioia, S., Hollanda, M., & Pimentel, M. (1999). Uso de resinas RE-Spec e Sr-Spec em geoquímica isotópica. Anais do V congresso de geoquímica dos países de língua portuguesa e VII Congresso Brasileiro de Geoquímica. 218.

Gioia, S., & Pimentel, M. (2000). The Sm-Nd isotopic method in the geochronology laboratory of the University of Brasília. Anais da Academia Brasileira de Ciencias, 72(2), 219-245. https://doi.org/10.1590/s0001-37652000000200009

Hamilton, D., & Mackenzie, W. (1965). Phase-equilibrium studies in the system NaAlSiO4 (nepheline)-KAlSiO4 (kalsilite)-SiO2-H2O. Mineralogical Magazine and Journal of the Mineralogical Society, 34(268), 214-231. https://doi.org/10.1180/minmag.1965.034.268.17

Heinrich, E. (1965). Microscopic identification of minerals. McGraw-Hill.

Ibáñez-Mejía, M., & Cordani, U. (2020). Zircon U-Pb geochronology and Hf-Nd-O isotope geochemistry of the Paleo- to Mesoproterozoic basement in the westernmost Guiana Shield (pp. 65-90). In Gómez, J. & Mateus-Zabala, D. (eds.), The Geology of Colombia, Volume 1 Proterozoic - Paleozoic. Publicaciones Geológicas Especiales 35, Servicio Geológico Colombiano. https://doi.org/10.32685/pub.esp.35.2019.04

Ibáñez-Mejía, M., Pullen, A., Arenstein, J., Gehrels, G., Valley, J., Ducea, M., Mora, A., Pecha, M., & Ruiz, J. (2015). Unraveling crustal growth and reworking processes in complex zircons from orogenic lower-crust: the proterozoic Putumayo Orogen of Amazonia. Precambrian Research, 267, 285-310. https://doi.org/10.1016/j.precamres.2015.06.01470

Ibáñez-Mejía, M., Ruiz, J., Valencia, V., Cardona, A., Gehrels, G., & Mora, A. (2011). The Putumayo Orogen of Amazonia and its implications for Rodinia reconstructions: new U-Pb geochronological insights into the proterozoic tectonic evolution of northwestern South America. Precambrian Research, 191(1-2), 58-77. https://doi.org/10.1016/j.precamres. 2011.09.005

Ibáñez-Mejía, M., & Tissot, F. (2019). Extreme Zr stable isotope fractionation during magmatic fractional crystallization. Science Advances, 5(12), 1-14. http://doi.org/10.1126/sciadv.aax8648

Jacobsen, S., & Wasserburg, G. (1980). Sm-Nd isotopic evolution of chondrites. Earth and Planetary Science Letters, 50(1), 139-155. https://doi.org/10.1016/0012-821X(80)90125-9

Jacobsen, S., & Wasserburg, G. (1984). Sm-Nd isotopic evolution of chondrites and achondrites, II. Earth and Planetary Science Letters, 67(2), 137-150. https://doi.org/10.1016/0012-821X(84)90109-2

Kroonenberg, S. (1982). A grenvillian granulite belt in the Colombian Andes and its relation to the Guiana Shield. Geologie en Mijnbouw, 61, 325-333.

Lugmair, G., & Marti, K. (1978). Lunar initial 143Nd/144Nd: differential evolution of the lunar crust and mantle. Earth and Planetary Science Letters, 39(3), 349-357. https://doi.org/10.1016/0012-821X(78)90021-3

Maniar, P., & Piccoli, P. (1989). Tectonic discrimination of granitoids. Geological Society of America Bulletin, 101(5), 635- 643. https://doi.org/10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2

Maya, M. (1992). Catálogo de dataciones isotópicas en Colombia. Boletín Geológico, 32(1), 127-187.

Maya, M., Amaya, C., Gómez, J., Tabares, G., Palacio, A., García, J., Tabares, F., Camacho, J., Betancur, J., & Duque, J. (2019). Guía para la elaboración de la libreta de campo de un proyecto de cartografía geológica. Serviminas.

Maya, M., Amaya, C., Restrepo, J., Duque, J., Palacio, A., Gutiérrez, P., Pérez, O., Ríos, C., Arias, E., & Bedoya, J. (2018). Memoria explicativa de la Plancha 372 – El Retorno. Escala 1: 100.000. Servicio Geológico Colombiano.

McDonough, W., & Sun, S. (1995). The composition of the earth. Chemical Geology, 120, 223-253.

McDonough, W., Sun, S., Ringwood, A., Jagoutz, E., & Hofmann, A. (1992). Potassium, rubidium, and cesium in the earth and moon and the evolution of the mantle of the earth. Geochimica et Cosmochimica Acta, 56(3), 1001-1012. https://doi.org/10.1016/0016-7037(92)90043-I

Motoki, A., Sichel, S., Vargas, T., Aires, J., Iwanuch, W., Mello, S., Motoki, K., Silva, S., Balmant, A., & Gonçalves, J. (2010). Geochemical evolution of the felsic alkaline rocks of Tanguá and Rio Bonito intrusive bodies, State of Rio de Janeiro, Brazil. Geociências, 29(3), 291-310.

Motoki, A., Sichel, S., Vargas, T., Melo, D., & Motoki, K. (2015). Geochemical behaviour of trace elements during fractional crystallization and crustal assimilation of the felsic alkaline magmas of the state of Rio de Janeiro, Brazil. Anais da Academia Brasileira de Ciências, 87(4), 1959-1979. https://doi.org/10.1590/0001-3765201520130385

Muñoz Rocha, J., Piraquive, A., Franco, J., Bonilla, A., Peña, M., Cramer, T., Rayo, L., & Villamizar, N. (2019). Megacircones ediacáricos de la Sienita Nefelínica de San José del Guaviare y su potencial como material de referencia para datación U/Pb mediante LA-ICP-MS. Boletín Geológico, 45, 5-22. https://doi.org/10.32685/0120-1425/boletingeo.45.2019.484

Nivia, A., Giraldo, M., Arango, M., Albarracín, H., Bermúdez, J. & Zapata, G. (2011). Geología de la plancha 350 - San José del Guaviare - Mapa escala 1:100.000. Servicio Geológico Colombiano.

Pearce, J., Harris, N., & Tindle, A. (1984). Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25(4), 956-983. https://doi.org/10.1093/petrology/25.4.956

Pinson, W., Hurley, P., Mencher, E., & Fairbairn, H. (1962). K-Ar and Rb-Sr ages of biotites from Colombia, South America. GSA Bulletin, 73(7), 907-910. https://doi.org/10.1130/0016-7606(1962)73[907:KARAOB]2.0.CO;2

Pullen, A., Ibáñez-Mejia, M., Gehrels, G., Giesler, D., & Pecha, M. (2018). Optimization of a laser ablation-single collector-inductively coupled plasma-mass spectrometer (thermo element 2) for accurate, precise, and efficient zircon U-Th- Pb geochronology. Geochemistry, Geophysics, Geosystems, 19(10), 3689-3705. http://doi.org/10.1029/2018GC007889

Ramos, V. (2010). The Grenville-age basement of the Andes. Journal of South American Earth Sciences, 29(1), 77-91. https://doi.org/10.1016/j.jsames.2009.09.004

Restrepo-Pace, P., Ruiz, J., Gehrels, G., & Cosca, M. (1997). Geochronology and Nd isotopic data of Grenville-age rocks in the Colombian Andes: new constraints for late proterozoic-early paleozoic paleocontinental reconstructions of the Americas. Earth and Planetary Science Letters, 150(3-4), 427-441. https://doi.org/10.1016/s0012-821x(97)00091-571.

Rosa, M., Conceição, H., Macambira, M., Galarza, M., Cunha, M., Menezes, R., Marinho, M., Filho, B., & Rios, D. (2007). Neoproterozoic anorogenic magmatism in the Southern Bahia Alkaline Province of NE Brazil: U-Pb and Pb-Pb ages of the blue sodalite syenites. Lithos, 97(1-2), 88-97. https://doi.org/10.1016/j.lithos.2006.12.011

Sláma, J., Košler, J., Condon, D., Crowley, J., Gerdes, A., Hanchar, J., Horstwood, M., Morris, G., Nasdala, L., Norberg, N., Schaltegger, U., Schoene, B., Tubrett, M., & Whitehouse, M. (2008). Plešovice zircon - A new natural reference material for U-Pb and Hf isotopic microanalysis. Chemical Geology, 249(1-2), 1-35. http://doi.org/10.1016/j.chemgeo.2007.11.005

Steiger, R., & Jager, E. (1977). Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth and Planetary Science Letters, 36(3), 359-362. https://doi.org/10.1016/0012-21X(77)90060-7

Storey, M., Wolff, J., Norry, M., & Marriner, G. (1989). Origin of hybrid lavas from Agua de Pau volcano, Sao Miguel, Azores. Geological Society of London, Special Publication, 42, 161-180. https://doi.org/https://doi.org/10.1144/GSL.SP.1989.042.01.11

Streckeisen, A. (1976). To each plutonic rock its proper name. Earth Science Reviews, 12(1), 1-33. https://doi.org/10.1016/0012-8252(76)90052-0

Toussaint, J. (1993). Introducción - Precámbrico. In Evolución geológica de Colombia. Universidad Nacional de Colombia.

Trumpy, D. (1943). Pre-Cretaceous of Colombia. GSA Bulletin, 54(9), 1281-1304. https://doi.org/10.1130/GSAB-54-1281

Trumpy, D. (1944). El Precretaceo de Colombia. Bogotá.

Vesga, J., & Castillo, L. (1972). Reconocimiento geológico y geoquímico preliminar del río Guaviare entre las confluencias con los ríos Ariari e Iteviare. Ingeominas.

Whitney, D., & Evans, B. (2010). Abbreviations for names of rock-forming minerals. American Mineralogist, 95(1), 185- 187. https://doi.org/10.2138/am.2010.3371

Winter, J. (2001). An introduction to igneous and metamorphic petrology. Prentice-Hall Inc.

Wolff, J. (2017). On the syenite-trachyte problem. Geology, 45(12), 1067-1070. https://doi.org/10.1130/G39415.1

Zhu, Y., Yang, J., Sun, J., Zhang, J., & Wu, F. (2016). Petrogenesis of coeval silica-saturated and silica-undersaturated alkaline rocks: mineralogical and geochemical evidence from the Saima alkaline complex, NE China. Journal of Asian Earth Sciences, 117, 184-207. https://doi.org/10.1016/j.jseaes.2015.12.014

Downloads

Download data is not yet available.

Similar Articles

1 2 3 4 > >> 

You may also start an advanced similarity search for this article.