The role of Rare Earth Elements in the deployment of wind energy in Colombia

Authors

DOI:

https://doi.org/10.32685/0120-1425/bol.geol.48.2.2021.552

Keywords:

Renewable energy technologies, mineral demand, climate change mitigation, Dysprosium, Neodymium

Downloads

How to Cite

Gallego, C. A. (2021). The role of Rare Earth Elements in the deployment of wind energy in Colombia. Boletín Geológico, 48(2), 61–79. https://doi.org/10.32685/0120-1425/bol.geol.48.2.2021.552

Issue

Section

Articles

Published

2021-09-24

Abstract

The deployment of renewable energy technologies will play a crucial role in the global transition to a low-carbon economy and ultimately in the fight against global warming. However, this transition could face important problems because most of those technologies rely on the steady supply of critical minerals. Colombia, thanks to its hydrological resources, has relied on the hydro­power for electricity generation. However, the government has implemented measures to back-up the energy system in draught periods and, consequently, fossil fuels-based plants have increased the market share and with these, CO2 emissions. This study assesses the mineral demand in Colombia in the period 2020-2050 for the rare earth elements embedded in the deployment of wind power technologies in four different climate policy scenarios in order to establish whether they could face geological bott­lenecks that could ultimately hamper the transition to a low-carbon economy. The Gigawatts (GW) of future capacity additions in the energy system are converted into tons of metal using published metal intensities of use and assumptions of Colombia’s technological pathway. Then, the cumulated mineral demand is compared against current mining production rates and geological reserves to establish geological bottlenecks. The results show that the reserves will not pose any threat to its transition. However, when compared to current mining rates, the mineral demand in 2050 could pose a problem for the supply of minerals. Finally, this study gives some policy recommendations that could be used to mitigate these issues, such as substitution, improved circular economy and sound technological choices.

Author Biography

Carlos Andrés Gallego, Servicio Geológico Colombiano, Dirección de Recursos Minerales, Bogotá, Colombia

Geologist from the Universidad de Caldas and MBA from the Technische Universität Bergakademie Freiberg, in Germany. He has worked in the mineral exploration industry in Colombia and Latin America and since 2020 is working in Servicio Geológico Colombiano on the Areas of Mineral Interest project.

References

Alonso, E., Sherman, A., Wallington, T., Everson, M., Field, F., Roth, R., & Kirchain, R. (2012). Evaluating Rare Earth Element Availability: A Case with Revolutionary Demand from Clean Technologies. Environmental Science & Technology, 46(6), 3406-3414. https://doi.org/10.1021/es203518d

Arango, S., & Larsen, E. (2010). The environmental paradox in generation: How South America is gradually becoming more dependent on thermal generation. Renewable and Sustainable Energy Reviews, 14(9), 2956-2965. https://doi.org/10.1016/j.rser.2010.07.049

Arrobas, D. L. P., Hund, K. L., Mccormick, M. S., Ningthoujam, J., & Drexhage, J. R. (2017). The Growing Role of Minerals and Metals for a Low Carbon Future. World Bank Group. http://documents.worldbank.org/curated/en/207371500386458722/The-Growing-Role-of-Minerals-and-Metals-for-a-Low-Carbon-Future

Brumme, A. (2011). Critical materials for wind power: The relevance of rare earth elements for wind turbines. Chemnitz University of Technology [Master’s Thesis]. Chemnitz University of Technology.

Calderón, S., Álvarez, A., Loboguerrero, A., Arango, S., Calvin, K., Kober, T., Daenzer, K., & Fisher, K. (2016). Achieving CO2 reductions in Colombia: Effects of carbon taxes and abatement targets. Energy Economics, 56, 575-586. https://doi.org/10.1016/j.eneco.2015.05.010

Churio-Silvera, O., Vanegas, M., & Barros, P. (2018). Status of Non-Conventional Sources of Energy in Colombia: A Look at the Challenges and Opportunities of the Electric Sector. Contemporary Engineering Sciences, 11(44), 2163-2172. https://doi.org/10.12988/ces.2018.85221

Davidsson, S., & Höök, M. (2017). Material requirements and availability for multi-terawatt deployment of Photovoltaics. Energy Policy, 108, 574-582. https://doi.org/10.1016/j.enpol.2017.06.028

Deetman, S., Pauliuk, S., van Vuuren, D., vand der Voet, E., & Tukker, A. (2018). Scenarios for Demand Growth of Metals in Electricity Generation Technologies, Cars, and Electronic Appliances. Environmental Science & Technology, 52(8), 4950-4959. https://doi.org/10.1021/acs.est.7b05549

DNV GL. (2017). Renewables, power and energy use forecast to 2050. Energy Transition Outlook.

Edsand, H.-E. (2017). Identifying barriers to wind energy diffusion in Colombia: A function analysis of the technological innovation system and the wider context. Technology in Society, 49, 1-15. https://doi.org/10.1016/j.techsoc.2017.01.002

ERECON. (2015). Strenghtening the European rare earths supply chain: Challenges and policy options. European Commission. https://ec.europa.eu/DocsRoom/documents/10882/attachments/1/translations

European Commission. (2015). European Rare Earths Competency Network (ERECON). https://ec.europa.eu/growth/sectors/raw-materials/specific-interest/erecon_en

Gómez, T., & Ribo, D. (2018). Assessing the obstacles to the participation of renewable energy sources in the electricity market of Colombia. Renewable and Sustainable Energy Reviews, 90, 131-141. https://doi.org/10.1016/j.rser.2018.03.015

Grandell, L., Lehtila, A., Kivinen, M., Koljonen, T., & Kihlman, S. (2016). Role of critical metals in the future markets of clean energy technologies. Renewable Energy, 95, 53-62. https://doi.org/10.1016/j.renene.2016.03.102

Habib, K., & Wenzel, H. (2014). Exploring rare earths supply constraints for the emerging clean energy technologies and the role of recycling. Journal of Cleaner Production, 84, 348- 359. https://doi.org/10.1016/j.jclepro.2014.04.035

Haque, N., Hughes, A., Lim, S., & Vernon, C. (2014). Rare Earth Elements: Overview of Mining, Mineralogy, Uses, Sus tainability and Environmental Impact. Resources, 3, 614- 635. https://doi.org/10.3390/resources3040614

Hayes, S., & McCullough, E. (2018). Critical minerals: A review of elemental trends in comprehensive criticality studies. Resources Policy, 59, 192-199. https://doi.org/10.1016/j.resourpol.2018.06.015

International Institute for Applied Systems Analysis (IIASA). (2015). Integrated Climate Modelling and Capacity Building Project in Latin America (CLIMACAP). Retrieved (29/01/2019) from https://tntcat.iiasa.ac.at/CLIMACAP-LAMPDB/dsd?Action=htmlpage&page=about

Kishita, Y., Nakatsuka, N., & Akamatsu, F. (2017). Scenario analysis for sustainable woody biomass energy businesses: The case study of a Japanese rural community. Journal of Cleaner Production, 142(4), 1471-1485. https://doi.org/10.1016/j.jclepro.2016.11.161

Kober, T., van der Zwaan, B., & Rösler, H. (2014). Emission certificate trade and costs under regional burden-sharing regimes for a 2°c climate change control target. Climate Change Economics, 5(1), 1-32. https://doi.org/10.1142/S2010007814400016

Koning, A., Kleijn, R., Huppes, G., Sprecher, B., Engelen, G., & Tukker, A. (2018). Metal supply constraints for a low-carbon economy? Resources, Conservation & Recycling, 129, 202-208. https://doi.org/10.1016/j.resconrec.2017.10.040

Lacal-Arantegui, R. (2015). Materials use in electricity generators in wind turbines e state-of-the-art and future specifications. Journal of Cleaner Production, 87, 275-283. https://doi.org/10.1016/j.jclepro.2014.09.047

Manberger, A., & Stenqvist, B. (2018). Global metal flows in the renewable energy transition: Exploring the effects of substitutes, technological mix and development. Energy Policy, 119, 226-241. https://doi.org/10.1016/j.enpol.2018.04.056

Mancheri, N., Sprecher, B., Bailey, G., Ge, J., & Tukker, A. (2019). Effect of Chinese policies on rare earth supply chain resilience. Resources, Conservation & Recycling, 142, 101- 112. https://doi.org/10.1016/j.resconrec.2018.11.017

Martinot, E., Dienst, C., Weilang, L., & Qimin, C. (2007). Renewable Energy Futures: Targets, Scenarios, and Pathways. Annual Review of Environment and Resources, 32, 205-239. https://doi.org/10.1146/annurev.energy.32.080106.133554

McCullough, E., & Nassar, N. (2017). Assessment of critical minerals: updated application of an early-warning screening methodology. Mineral Economics, 30(3), 257-272. https://doi.org/10.1007/s13563-017-0119-6

Ministerio de Energía de Colombia. (2020, October 22). Histórico de Noticias - Ministerio de Energía. Retrieved from https://www.minenergia.gov.co/historico-de-noticias?idNoticia=24243663

Nieves, J., Aristizabal, A., Dyner, I., Báez, O., & Ospina, D. (2019). Energy demand and greenhouse gas emissions analysis in Colombia: A LEAP model application. Energy, 169, 380-397. https://doi.org/10.1016/j.energy.2018.12.051

Pavel, C., Lacal-Arantegui, R., Marmier, A., Schüler, D., Tzimas, E., Buchert, M., Jenseit, W., & Blagoeva, D. (2017). Substitution strategies for reducing the use of rare earths in wind turbines. Resources Policy, 52, 349-357. https://doi.org/10.1016/j.resourpol.2017.04.010

Radomes, A., & Arango, S. (2015). Renewable energy technology diffusion: an analysis of photovoltaic-system support schemes in Medellín, Colombia. Journal of Cleaner Production, 92, 152-161. https://doi.org/10.1016/j.jclepro.2014.12.090

Science for Global Insight. (2015). CLIMACAP-LAMP Scenario database. Retrieved (25/11/2018) from https://tntcat.iiasa.ac.at/CLIMACAP-LAMPDB/dsd?Action=htmlpage&page=about#intro

Shen, Y., Moomy, R., & Eggert, R. (2020). China’s public policies toward rare earths, 1975-2018. Mineral Economics, 33, 127-151. https://doi.org/10.1007/s13563-019-00214-2

Task Force on Climate Related Financial Disclosures (TCFD). (2017). The Use of Scenario Analysis in Disclosure of Climate-Related Risks and Opportunities. https://www.tcfdhub.org/scenario-analysis/

Tokimatsu, K., Höök, M., McLellan, B., Wachtmeister, H., Murakami, S., Yasuoka, R., & Nishio, M. (2018). Energy modeling approach to the global energy-mineral nexus: Exploring metal requirements and the well-below 2 °C target with 100 percent renewable energy. Applied Energy, 225, 1158-1175. https://doi.org/10.1016/j.apenergy.2018.05.047

Tong, W., Langreder, W., Schaffarczyk, A., Voutsinas, S., Cooper, P., & Lewis, C. (2010). Wind Power Generation and Wind Turbine Design (Wei Tong, ed.). WIT Press.

Unidad de Planeación Minero Energética (UPME). (2016). Proyección de la demanda de energía eléctrica y potencia máxima en Colombia. http://www.siel.gov.co/siel/documentos/documentacion/Demanda/UPME_Proyeccion_Demanda_Energia_Electrica_Junio_2016.pdf

Downloads

Download data is not yet available.

Similar Articles

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 > >> 

You may also start an advanced similarity search for this article.