Gravity Studies at Cerro Machín Volcano, Colombia
DOI:
https://doi.org/10.32685/0120-1425/bol.geol.49.1.2022.619![](https://revistas.sgc.gov.co/public/journals/2/submission_619_382_coverImage_es_ES.jpg)
License
Copyright (c) 2022 Servicio Geológico Colombiano
![Creative Commons License](http://i.creativecommons.org/l/by/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution 4.0 International License.
Downloads
Additional Files
How to Cite
Issue
Section
Published
Abstract
A gravimetric study was performed at the Cerro Machin volcano (4° 29’ N, 75° 22’ W), Tolima Department, Colombia, to obtain a density distribution of the volcanic edifice and its basement. This study was divided into three main sections. The first section consisted of gravimetric measurements on the volcano, which were performed with a Scintrex Autograv CG-5 gravimeter. In the second section, a complete Bouguer anomaly was obtained by applying gravimetric corrections to the field data, such as instrumental drift, latitude, free-air, Bouguer, and topographic corrections. For the third section, we used the GM-SYS extension of Oasis Montaj to obtain a forward model of the subsurface density distribution that allowed us to explain the source of the gravimetric anomaly. As the main results for this study, we determined that the field-obtained Bouguer anomaly ranged between -87 mGal and -29 mGal in the study area. The Oasis Montaj density model allowed us to infer an elongated dacitic complex at the top of the distribution with a mean density of 2300 kg/m3, with the presence of a volcanic conduit of 2400 kg/m3 at the base. The seismicity in the area suggests that the gravimetric anomaly caused by the dome and its surrounding materials may be related to a large weakened zone at the interface between the volcanic edifice and the metamorphic basement, provoked by fault activity, interaction with the hydrothermal system and the ascent of hot, fluid material to the surface. This study suggests one interpretation of the Machin dome volcanic complex and encourages further gravimetric studies and modeling over a wider area.
Author Biographies
Nicolas, Universidad de los Andes, Bogotá, Colombia
Geoscientist with an interest in working in geology and exploration geophysics. I have the ability to integrate the branches of geology, geophysics and the use of remote sensors for different studies in the earth sciences.
Juan Diego, Universidad de los Andes, Bogotá, Colombia
Geoscientist with special interest in the areas of Geophysics and Volcanology. I have basic knowledge of mineralogy, stratigraphy, petrology, seismic, seismology and structural geology, as well as the basic concepts of mineral and hydrocarbon exploration
Indira, Universidad de los Andes. Now at Servicio Geológico Colombiano, Bogotá, Colombia
Seismologist of the National Seismological Network of Colombiam with interest in the use of applied and fundamental research in solving geological problems, such as crustal models, modeling of seismic events, fluid migration, tectonic models and pre-eruptive phenomena.
References
Acosta Agudelo, L. (2019). Contrastes texturales en fragmentos juveniles de depósitos de flujos piroclásticos de erupciones vulcanianas en los andes del norte: casos de estudio Cerro Machín, Doña Juana y Azufral, Colombia [Undergraduate thesis]. Universidad de los Andes. https://repositorio.uniandes.edu.co/handle/1992/45549
Arce, J. L., Cervantes, K. E., Macías, J. L., & Mora, J. C. (2005). The 12.1 ka Middle Toluca Pumice: A dacitic Plinian–subplinian eruption of Nevado de Toluca in Central Mexico. Journal of Volcanology and Geothermal Research, 147(1-2), 125-143. https://doi.org/10.1016/j.jvolgeores.2005.03.010
Cerpa, A. C. (2018). Caracterización del potencial geotérmico a partir de análisis geoquímicos de fuentes termales, en el volcán Cerro Machín, Colombia [Undergraduate thesis]. Universidad EIA.
Dentith, M., & Mudge, S. T. (2014). Geophysics for the Mineral Exploration Geoscientist. Cambridge University Press.
Hall, M. L., & Wood, C. A. (1985). Volcano-tectonic segmentation of the northern Andes. Geology, 13(3), 203-207. https://doi.org/10.1130/0091-7613(1985)13<203:VSOTNA>2.0.CO;2
Hinze, W. J. (2003). Bouguer reduction density, why 2.67? Geophysics, 68(5), 1559-1560. https://doi.org/10.1190/1.1620629
Hoblitt, R. P., & Harmon, R. S. (1993). Bimodal Density Distribution of Cryptodome Dacite from the 1980 Eruption of Mount St. Helens, Washington. Bulletin of Volcanology, 55, 421-437. https://doi.org/10.1007/BF00302002
Inguagiatto, S., Londoño, J. M., Chacón, Z., Liotta, M., Gil, E., & Alzate, D. (2016). The hydrothermal system of Cerro Machín volcano (Colombia): New magmatic signals observed during 2011–2013. Chemical Geology, 469, 60-68. http://dx.doi.org/10.1016/j.chemgeo.2016.12.020
Kueppers, U., Scheu, B., Spieler, O., & Dingwell, D. B. (2005). Field-based density measurements as tool to identify pre-eruption dome structure: set-up and first results from Unzen volcano, Japan. Journal of Volcanology and Geothermal Research, 141(1-2), 65-75. https://doi.org/10.1016/j.jvolgeores.2004.09.005
Laeger, K., Halama, R., Hansteen, T., Savov, I. P., Murcia, H. F., Cortés, G. P., & Garbe-Schönberg, D. (2013). Crystallization conditions and petrogenesis of the lava dome from the ~900 years BP eruption of Cerro Machín Volcano, Colombia. Journal of South American Earth Sciences, 48, 193-208. https://doi.org/10.1016/j.jsames.2013.09.009
León, A. (2019). Estudio de Coda Q para sismos volcano-tectónicos en el volcán Cerro Machín (Colombia) [Bachelor thesis]. Universidad de los Andes.
Londoño, J. M. (2011). 3D seismic tomography of Cerro Machín Volcano, Colombia. In XIV Latinamerican Congress of Geology. Medellín, Colombia.
Londoño, J. M., & Kumagai, H. (2018). 4D seismic tomography of Nevado del Ruiz Volcano, Colombia, 2000–2016. Jour nal of Volcanology and Geothermal Research, 358, 105-123. https://doi.org/10.1016/j.jvolgeores.2018.02.015
Méndez Fajury, R. A., Cepeda Vanegas, H., Monsalve Bustamante, M. L., Murcia Leal, L. A., & Núñez Tello, A. (1996). Volcán Cerro Machín, departamento del Tolima, Colombia: Pasado, presente y futuro. Instituto Nacional de Investigaciones Geológico Mineras (Ingeominas). https://miig.sgc.gov.co/Paginas/Resultados.aspx?k=110020101010002305000000000
Méndez, R. A. (2002). Formación Machín (Qm), cordillera Central, departamento del Tolima. In Catálogo de las Unidades Litoestratigráficas de Colombia. Instituto Colombiano de Geología y Minería (Ingeominas).
Monsalve, M. L., & Pulgarín, B. (1993). Mapa preliminar de amenaza volcánica potencial del volcán Puracé: Memoria explicativa. Revista Ingeominas, 2, 3-27.
Mosquera, D., Núñez, A., & Vesga-Ordóñez, C. J. (1982). Geología de la Plancha 244 Ibagué. Instituto Colombiano de Geología y Minería (Ingeominas). https://miig.sgc.gov.co/Paginas/Resultados.aspx?k=130100101010024375000000000
Musset, A. E., & Khan, M. A. (2000). Looking Into the Earth: An Introduction to Geological Geophysics. Cambridge University Press.
Northwest Geophysical Associates, Inc. (2004). Modeling Concepts. In GM-SYS Gravity/Magnetic Modeling Software: Vol. 4.9.
OpenTopography. (2021). Copernicus GLO-90 Digital Surface Model. https://doi.org/10.5069/G9028PQB
Palacios, N. (2017). A Matlab code to compute gravity measurements’ terrain corrections in Puracé (Cauca), Colombia [Bachelor thesis]. Universidad de los Andes, Bogotá, Colombia.
Piedrahita, D. A., Aguilar-Casallas, C., Arango-Palacio, E., Murcia, H., & Gómez-Arango, J. (2018). Estratigrafía del cráter y morfología del volcán Cerro Machín, Colombia. Boletín de Geología, 40(3), 29-48. http://dx.doi.org/10.18273/revbol.v40n3-2018002
Rueda, H. (2005). Erupciones plinianas del Holoceno en el volcán Cerro Machín, Colombia: Estratigrafía, Petrografía y Dinámica Eruptiva [Master Thesis]. Universidad Nacional Autónoma de México.
Rueda, H., Macías, J. L., Arce, J. L., Gardner, J. E., & Layer, P. W. (2013). The ~ 31 ka rhyolitic Plinian to sub-Plinian eruption of Tlaloc Volcano, Sierra Nevada, central Mexico. Journal of Volcanology and Geothermal Research, 252, 73-91. https://doi.org/10.1016/j.jvolgeores.2012.12.001
Vajda, P. (2016). Recent Developments and Trends in Volcano Gravimetry. In K. Nemeth, Updates in Volcanology – From Volcano Modelling to Volcano Geology. IntechOpen. http://dx.doi.org/10.5772/63420
Wynn, J., Dzurisin, D., Finn, C. A., Kauahikaua, J. P., & LaHusen, R. G. (2006). Applications of Geophysical Methods to Volcano Monitoring. 19th Symposium on the Application of Geophysics to Engineering and Environmental Problems. Seattle, United States.