Integrated Seismic Catalog for Colombia

Autores/as

DOI:

https://doi.org/10.32685/0120-1425/bol.geol.50.1.2023.665

Palabras clave:

sismología, sismicidad regional, sismicidad histórica, Suramérica, Centroamérica, Caribe, peligro sísmico
Structure of the viewer

Descargas

Cómo citar

Montejo, J., Arcila Rivera, M. M. M. ., & Zornosa, D. G. (2023). Integrated Seismic Catalog for Colombia. Boletín Geológico, 50(1). https://doi.org/10.32685/0120-1425/bol.geol.50.1.2023.665

Número

Sección

Artículos

Publicado

13-03-2023

Resumen

Este artículo presenta el conjunto de datos de terremotos denominado Catálogo Sísmico Integrado (CSI) para Colombia y territorios limítrofes (fronteras con Costa Rica, Ecuador, Nicaragua, Panamá, Perú y Venezuela). El CSI contiene soluciones denominadas preferidas, construidas con base en catálogos sísmicos globales y regionales. Cada solución preferida incluye las mejores alternativas disponibles para magnitud y localización, seleccionadas de entre las candidatas provenientes de los diferentes catálogos recopilados siguiendo matrices de priorización. Los eventos sísmicos que componen el CSI se encuentran en un cuadrante entre los −84° y −66° de longitud y −5° y 16° de latitud, en el sistema geográfico WGS84, y cubre el periodo desde 1610 (apoyado en catálogos de sismos históricos con magnitudes estimadas a partir de intensidades macrosísmicas) hasta el 31 de diciembre de 2020. Las soluciones preferidas incluidas en el CSI tienen valores de magnitud homogeneizados a magnitud de momento (Mw), utilizando transformaciones en los casos en donde este valor no se estimó por su fuente original, y en su lugar se calculó un tipo de magnitud diferente. Se espera que el CSI sirva como insumo o referencia para generar modelos de amenaza y caracterizar fuentes sismogénicas, puesto que busca integrar diferentes soluciones de localización y magnitud, estandarizadas a los parámetros más utilizados en la actualidad.

Referencias bibliográficas

Albini, P., Musson, R. M. W., Gómez Capera, A. A., Locati, M., Rovida, A., Stucchi, M., & Viganò, D. (2013). Global Historical Earthquake Archive and Catalogue (1000-1903), GEM Technical Report 2013-01 V1.0.0. GEM Foundation. https://doi.org/10.13117/GEM.GEGD.TR2013.01

Agnew, D.C. (1989). Seismology: History. In Geophysics. Encyclopedia of Earth Science. Springer. https://doi.org/10.1007/0-387-30752-4_143

Alvarenga, E., Barquero, R., Boschini, I., Escobar, J., Fernández, M., Mayol, P., Havskov, J., Gálvez, N., Hernández, Z., Ottemöller, L., Pacheco, J., Redondo, C., Rojas, W., Vega, F., Talavera, E., Taylor, W., Tapia, A., Tenorio, C., Toral, J., & Central American Seismic Center (CASC). (1998). Seismological Research Letters, 69(5), 394-399. https://doi.org/10.1785/gssrl.69.5.394

Arcila, M. M., García, J., Montejo Espitia, J. S., Eraso, J. F., Valcárcel Torres, J., Mora Cuevas, M., Vigano, D., & Díaz Parra, F. J. (2020). Modelo nacional de amenaza sísmica para Colombia. Servicio Geológico Colombiano. https://doi.org/10.32685/9789585279469

Arteta, C., Pájaro, C., Mercado, V., Montejo, J. S., Arcila, M., & Abrahamson, N. (2021). Ground-motion model for subduction earthquakes in northern South America. Earthquake Spectra, 37(4), 2419-2452. https://doi.org/10.1177/87552930211027585

Arteta, C., Pájaro, C., Mercado, V., Montejo, J., Árcila, M., & Abrahamson, N. (2023). Ground-Motion Model (GMM) for Crustal Earthquakes in Northern South America (NoSAm Crustal GMM). Bulletin of the Seismological Society of America, 113(1), 186-203. https://doi.org/10.1785/0120220168

Beauval, C., Yepes, H., Palacios, P., Segovia, M., Alvarado, A., Font, Y., Aguilar, J., Troncoso, L., & Vaca, S. (2013). An earthquake catalog for seismic hazard assessment in Ecuador. Bulletin of the Seismological Society of America, 103(2A), 773-786. https://doi.org/10.1785/0120120270

Di Giacomo, D., & Storchak, D. A. (2016). A scheme to set preferred magnitudes in the ISC Bulletin. Journal of Seismology, 20, 555-567. https://doi.org/10.1007/s10950-015-9543-7

Di Giacomo, D., Engdahl, E., & Storchak, D. (2018). The ISC-GEM Earthquake Catalogue (1904-2014): Status after the extension project. Earth System Science Data (ESSD), 10(4), 1877-1899. https://doi.org/10.5194/essd-10-1877-2018

Dutfoy, A. (2021). Earthquake recurrence model based on the generalized Pareto distribution for unequal observation periods and imprecise magnitudes. Pure and Applied Geophysics, 178, 1549-1561. https://doi.org/10.1007/s00024-021-02712-3

Dziewonski, A., Chou, T., & Woodhouse, J. (1981). Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. Journal of Geophysical Research, 86(B4), 2825-2852. https://doi.org/10.1029/JB086iB04p02825

Ekström, G., Nettles, M., & Dziewonski, A. (2012). The global CMT project 2004-2010: Centroid-moment tensors for 13,017 earthquakes. Physics of the Earth and Planetary Interiors, 200-201, 1-9. https://doi.org/10.1016/j.pepi.2012.04.002

Engdahl, E., Van der Hilst, R., & Buland, R. (1998). Global teleseismic earthquake relocation with improved travel times and procedures for depth determination. Bulletin of the Seismological Society of America, 88(3), 722-743. https://doi.org/10.1785/BSSA0880030722

Engdahl, E., Di Giacomo, D., Sakarya, B., Gkarlaouni, C., Harris, J., & Storchak, D. (2020). ISC-EHB 1964-2016, an Improved Data Set for Studies of Earth Structure and Global Seismicity. Earth and Space Science, 7(1). https://doi.org/10.1029/2019EA000897

Font, Y., Segovia, M., Vaca, S., & Theunissen, T. (2013). Seismicity patterns along the Ecuadorian subduction zone: new constraints from earthquake location in a 3-D a priori velocity model. Geophysical Journal International, 193(1), 263-286. https://doi.org/10.1093/gji/ggs083

González, Á. (2017). The Spanish National Earthquake Catalogue: Evolution, precision and completeness. Journal of Seismology, 21, 435-471. https://doi.org/10.1007/s10950-016-9610-8

Gutenberg, B., & Richter, C. (1944). Frequency of earthquakes in California. Bulletin of the Seismological Society of America, 34(4), 185-188. https://doi.org/10.1785/BSSA0340040185

Hutton, K., Woessner, J., & Hauksson, E. (2010). Earthquake monitoring in South California for Seventy-Seven Years (1932-2008). Bulletin of the Seismological Society of America, 100(2), 423-443. https://doi.org/10.1785/0120090130

International Seismological Centre (ISC). (2022a). On-line Bulletin. https://doi.org/10.31905/D808B830

International Seismological Centre (ISC). (2022b). ISC-GEM Earthquake Catalogue. https://doi.org/10.31905/d808b825

International Seismological Centre (ISC). (2022c). ISC-EHB dataset. https://doi.org/10.31905/PY08W6S3

Kijko, A., & Graham, G. (1998). Parametric-historic procedure for probabilistic seismic hazard analysis. Part I: Estimation of maximum regional magnitud Mmax. Pure and Applied Geophysics, 152, 413-442. https://doi.org/10.1007/s000240050161

Manchuel, K., Traversa, P., Baumont, D., Cara, M., Nayman, E., & Durouchoux, C. (2018). The French seismic CATalogue (FCAT-17). Bulletin of Earthquake Engineering, 16, 2227- 2251. https://doi.org/10.1007/s10518-017-0236-1

Mercado, V., Pájaro, C., Arteta, C., Díaz, F., Montejo, J., Arcila, M., & Abrahamson, N. A. (2023). Semi-empirical model for the estimation of the site amplification in Northern South America. Earthquake Spectra. https://doi.org/10.1177/87552930231153190

Ojeda, A., & Havskov, J. (2001). Crustal structure and local seismicity in Colombia. Journal of Seismology, 5(4), 575- 593. https://doi.org/10.1023/A:1012053206408

Öztürk, S. (2017). Space-time assessing of the earthquake potential in recent years in the Eastern Anatolia region of Turkey. Earth Sciences Research Journal, 21(2), 67-75. https://doi.org/10.15446/esrj.v21n2.50889

Pedraza García, P., Vargas, C. A., & Monsalve, H. (2007). Geometric model of the Nazca plate subduction in southwest Colombia. Earth Science Research Journal, 11(2), 117-130.

Salazar, W., Brown, L., Hernández, W., & Guerra, J. (2013). An earthquake catalogue for El Salvador and neighboring Central American countries (1528-2009) and its implication in the seismic hazard assessment. Journal of Civil Engineering and Architecture, 7(8), 1018-1045. https://doi.org/10.17265/1934-7359/2013.08.011

Servicio Geológico Colombiano. (1993). Red Sismológica Nacional de Colombia [Data set]. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/CM

Storchak, D., Di Giacomo, D., Bondár, I., Engdahl, E., Harris, J., Lee, W., Villaseñor, A., & Bormann, P. (2013). Public release of the ISC-GEM Global Instrumental Earthquake Catalogue (1900-2009). Seismological Research Letter, 84(5), 810-815. https://doi.org/10.1785/0220130034

Storchak, D., Di Giacomo, D., Engdahl, E., Harris, J., Bondár, I., Lee, W., Bormann, P., & Villaseñor, A. (2015). The ISC-GEM Global Instrumental Earthquake Catalogue (1900-2009): Introduction. Physics of the Earth and Planetary Interiors, 239, 48-63. https://doi.org/10.1016/j.pepi.2014.06.009

Syracuse, E., Maceira, M., Prieto, G., Zhang, H., & Ammon, C. (2016). Multiple plates subducting beneath Colombia, as iluminated by seismicity and velocity from the joint inversion of seismic ang gravity data. Earth and Planetary Science Letters, 444, 139-149. https://doi.org/10.1016/j.epsl.2016.03.050

Unidad Nacional para la Gestión del Riesgo de Desastres (UNGRD). (2016). Plan Nacional de gestión del riesgo de desastres. http://portal.gestiondelriesgo.gov.co/Paginas/Plan-Nacional-de-Gestion-del-Riesgo.aspx

USGS. (2017). Advanced National Seismic System (ANSS) Comprehensive Catalog of Earthquake Events and Products: Various. Earthquake Hazards Program. https://doi.org/10.5066/F7MS3QZH

Weston, J., Engdahl, E., Harris, J., Di Giacomo, D., & Storchack, D. (2018). ISC-EHB: Reconstruction of a robust earthquake dataset. Geophysical Journal International, 214(1), 474-484. https://doi.org/10.1093/gji/ggy155

Yarce, J., Monsalve, G., Becker, T., Cardona, A., Poveda, E., Alvira, D., & Ordóñez-Carmona, O. (2014). Seismological observations in Northwestern South America: Evidence for two subduction segments, contrasting crustal thicknesses and upper mantle flow. Tectonophysics, 637, 57-67. https://doi.org/10.1016/j.tecto.2014.09.006

Descargas

Los datos de descargas todavía no están disponibles.

Artículos similares

<< < 1 2 3 4 5 6 7 8 9 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.