Moment tensor and focal mechanism data of earthquakes recorded by Servicio Geológico Colombiano from 2014 to 2021

Autores/as

DOI:

https://doi.org/10.32685/0120-1425/bol.geol.50.2.2023.694

Palabras clave:

Tensor de Momento Sísmico, Mecanismo Focal, SWIFT, SCMTV, Fase W, ISOLA, polaridades de primeros arribos, sismología.
Figure 1. Focal mechanisms calculated by the SGC of earthquakes occurred between 2014 and 2021.  From each focal mechanism, the user can access the detail of the moment tensor solutions for each earthquake

Descargas

Cómo citar

Dionicio, V., Pedraza, P., & Poveda, E. (2023). Moment tensor and focal mechanism data of earthquakes recorded by Servicio Geológico Colombiano from 2014 to 2021. Boletín Geológico, 50(2). https://doi.org/10.32685/0120-1425/bol.geol.50.2.2023.694

Número

Sección

Artículos

Publicado

16-08-2023

Resumen

El Servicio Geológico Colombiano presenta los tensores de momento sísmico y mecanismos focales calculados para sismos localizados en el territorio nacional y regiones fronterizas desde 2014 hasta 2021. Estas soluciones se obtuvieron usando diferentes métodos basados en inversión de formas de onda (SWIFT, SCMTV, Fase W e ISOLA) y polaridades de primeros arribos (FPFIT). Esta información se ha organizado en una base de datos y se ha dispuesto al público mediante una página web por medio de la cual se pueden hacer búsquedas por fechas, área circular o cuadrante. Las soluciones del centroide del tensor de momento son fundamentales para comprender la geometría de la falla, la fuente sísmica que produce un sismo, su magnitud, y la energía liberada por el mismo. Igualmente, gracias a esta información es posible hacer interpretaciones sobre la tectónica de placas, análisis de esfuerzos de la corteza terrestre y su dinámica, modelos dinámicos y cinemáticos de la fuente, análisis de fallas activas y potencial tsunamigénico de sismos, entre otros aspectos.

Referencias bibliográficas

Aki, K. y Richards, P. G. (1980). Quantitative seismology, Theory and methods, Volume 1. W.H. Freeman and Co.

Audemard, F. A., Romero, G., Rendon, H. y Cano, V. (2005). Quaternary fault kinematics and stress tensors along the southern Caribbean from fault-slip data and focal mechanism solutions. Earth-Science Reviews, 69 (3-4), 181-233. https://doi.org/10.1016/j.earscirev.2004.08.001

Bishop, B. T., Cho, S., Warren, L., Soto-Cordero, L., Pedraza, P., Prieto, G. A., y Dionicio, V. (2023). Oceanic intraplate faulting as a pathway for deep hydration of the lithosphere: Perspectives from the Caribbean. Geosphere, 19(1), 206-234. https://doi.org/10.1130/GES02534.1

Bormann, P., Wendt, S. y DiGiacomo, D. (2013). Seismic Sources and Source Parameters. En Bormann, P. (Ed.), New manual of seismological observatory practice 2 (NMSOP2), Potsdam. Deutsches GeoForschungsZentrum GFZ, 1-259. https://doi.org/10.2312/GFZ.NMSOP-2_ch3

Chang, Y., Warren, L. M., Zhu, L. y Prieto, G. A. (2019). Earthquake focal mechanisms and stress field for the intermediate-depth Cauca Cluster, Colombia. Journal of Geophysical Research: Solid Earth, 124 (1), 822-836. https://doi.org/10.1029/2018JB016804

Cortés, M. y Angelier, J. (2005). Current states of stress in the northern Andes as indicated by focal mechanisms of earthquakes. Tectonophysics, 403(1–4), 29–58. https://doi.org/10.1016/j.tecto.2005.03.020

Dicelis, G., Assumpção, M., Kellogg, J., Pedraza, P. y Dias, F. (2016). Estimating the 2008 Quetame (Colombia) earthquake source parameters from seismic data and InSAR measurements. Journal of South American Earth Sciences, 72, 250-265, ISSN 0895-9811, https://doi.org/10.1016/j.jsames.2016.09.011.

Dziewonski, A. M., Chou T. A. y Woodhouse, J. H. (1981). Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. Journal of Geophysical Research , 86, 2825-2852. doi:10.1029/JB086iB04p02825

Ekström, G., Nettles, M. y Dziewonski, A. M. (2012). The global CMT project 2004-2010: Centroid-moment tensors for 13,017 earthquakes. Phys. Earth Planet. Inter., 200-201, 1-9. doi:10.1016/j.pepi.2012.04.002

GFZ (2023). GEOFON Moment Tensor Solutions. https://doi.org/10.17616/R36613 https://geofon.gfz-potsdam.de/old/eqinfo/list.php?mode=mt

Gómez-Alba, S., Fajardo-Zarate, C. E., y Vargas, C. A. (2016). Stress field estimation based on focal mechanisms and back projected imaging in the Eastern Llanos Basin (Colombia). Journal of South American Earth Sciences, Volume 71, 2016, 320-332, ISSN 0895-9811. https://doi.org/10.1016/j.jsames.2015.08.010.

Hanka, W. y Kind, R. (1994). The GEOFON Program. Annali di Geofisica, 37 (5), 1060-1065. https://doi.org/10.4401/ag-4196

Hanks, T. C. y Kanamori, H. (1979). A moment magnitude scale. Journal of Geophysical Research B: Solid Earth, 84 (B5), 2348–2350. https://doi.org/10.1029/JB084iB05p02348

Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences and gempa GmbH (2008). The SeisComP seismological software package. GFZ Data Services. doi:10.5880/GFZ.2.4.2020.003

Kafka, A. L. y Weidner, D. J. (1981). Earthquake focal mechanisms and tectonic processes along the southern boundary of the Caribbean Plate. Journal of Geophysical Research: Solid Earth, 86 (B4) 2877-2888. https://doi.org/10.1029/JB086iB04p02877

Kanamori H. (1977). The energy release in great earthquakes. Journal of Geophysical Research, 82 (20), 2981–2987.

Kanamori, H. (1993). W phase. Geophysical Research Letters, 20 (16), 1691-1694. https://doi.org/10.1029/93GL01883

Kikuchi, M. y Kanamori, H. (1991). Inversion of complex body waves - III. Bulletin of the Seismological Society of America, 81(6), 2335–2350. https://doi.org/10.1785/bssa0810062335

Kanamori, H. y Rivera, L. (2008). Source inversion of W phase: Speeding up seismic tsunami warning. Geophysical Journal International, 175(1), 222–238. https://doi.org/10.1111/j.1365-246X.2008.03887.x

Londoño, J. M., Quintero, S., Vallejo, K., Muñoz, F. y Romero, J. (2019). Seismicity of Valle Medio del Magdalena basin, Colombia. Journal of South American Earth Sciences, 92, 565-585, ISSN 0895-9811. https://doi.org/10.1016/j.jsames.2019.04.003

Nakano, M., Kumagai, H. y Inoue, H. (2008). Waveform inversion in the frequency domain for the simultaneous determination of earthquake source mechanism and moment function. Geophysical Journal International, 173(3), 1000–1011. https://doi.org/10.1111/j.1365-246X.2008.03783.x

Minson, S. E. y Dreger, D. S. (2008). Stable inversions for complete moment tensors. Geophysical Journal International, 174(2), 585–592. https://doi.org/10.1111/j.1365-246X.2008.03797.x

Molnar, P. y Sykes, L. (1969) Tectonics of the Caribbean and Middle America regions from focal mechanisms and seismicity. Geological Society of America Bulletin, 80 (9): 1639–1684. https://doi.org/10.1130/0016-7606(1969)80[1639:TOTCAM]2.0.CO;2

Monsalve-Jaramillo, H., Valencia-Mina, W., Cano-Saldaña, L. y Vargas, C. A. (2018). Modeling subduction earthquake sources in the central-western region of Colombia using waveform inversion of body waves. Journal of Geodynamics, 116, 47–61. https://doi.org/10.1016/j.jog.2018.02.005

Montejo, J., Arcila, M., y Zornosa, D. (2023). Integrated Seismic Catalog for Colombia. Boletín Geológico, 50(1). https://doi.org/10.32685/0120-1425/bol.geol.50.1.2023.665

Ottemöller, L., Voss, P. H. y Havskov J. (2021). SEISAN earthquake analysis software for Windows, Solaris, Linux and Macosx (12.0). University of Bergen. ISBN 978-82-8088-501-2, URL http://seisan.info

Palma, M.; Audemard, F.A. y Romero, G. (2010). Nuevos mecanismos focales para Venezuela y áreas vecinas 2005-2008: importancia de la densificación y distribución de la Red Sismológica Nacional. Revista Técnica de la Facultad de Ingeniería Universidad del Zulia, 33 (2), 108-121. https://ve.scielo.org/scielo.php?script=sci_arttext&pid=S0254-07702010000200002

Pennington, W.D. (1981). Subduction of the Eastern Panama Basin and seismotectonics of northwestern South America. Journal of Geophysical Research - Solid Earth, 86 (B11), 10753-10770. https://doi.org/10.1029/JB086iB11p10753

Poli, P., Prieto, G. A., Yu, C.Q., Florez, M., Agurto-Detzel, H., Mikesell, T.D., Chen, G., Dionicio V. y Pedraza, P. (2016). Complex rupture of the M6. 3 2015 March 10 Bucaramanga earthquake: evidence of strong weakening process. Geophys. J. Int. 205(2), 988-994.

Posada, G., Monsalve, G. y Abad, A. M. (2017). Focal mechanism construction in the north of the Colombian Central Cordillera from record the National Seismological Network of Colombia. Boletín de Ciencias de la Tierra, 42, 36-44. https://doi.org/10.15446/rbct.n42.57160

Poveda, E., Pedraza, P., Velandia, F., Mayorga, E., Plicka, V., Gallovič, F. y Zahradník, J. (2022). 2019 MW 6.0 Mesetas (Colombia) earthquake sequence: Insights from integrating seismic and morphostructural observations. Earth and Space Science. https://doi.org/10.1029/2022ea002465

Quintanar, L., Molina-García, S. P. y Espíndola, V. H. (2022) The Gorgona island, Colombia, earthquake of 10 September 2007 (MW 6.8); rupture process and implications on the seismic hazard in the region, Journal of South American Earth Sciences, 118, 103941, ISSN 0895-9811. https://doi.org/10.1016/j.jsames.2022.103941

Reasenberg, P. y Oppenheimer, D. (1985). FPFIT, FPPLOT and FPPAGE: Fortran computer programs for calculating and displaying earthquake fault-plane solutions. U.S. Geological Survey, Open-File Report, 85–739.

Sarabia Gómez, A. M., Barbosa Castro, D. R. y Arcila Rivera, M. M. (2022). Macroseismic intensity data and effects of significant earthquakes in Colombia from historical seismicity studies. Boletín Geológico, 49(2), 5-14, 2022. https://doi.org/10.32685/0120-1425/bol.geol.49.2.2022.638

Saul, J., Becker, J. y Hanka, W. (2011). Global moment tensor computation at GFZ Potsdam. American Geophysical Union, Fall Meeting 2011, Abstract ID S51A-2202. https://ui.adsabs.harvard.edu/abs/2011AGUFM.S51A2202S/abstract

Shearer, P. (2019). Introduction to seismology (Third Edition). Cambridge University Press, Cambridge, 442 pp. doi:10.1017/9781316877111

Sokos, E. N. y Zahradnik, J. (2008). ISOLA a Fortran code and a Matlab GUI to perform multiple-point source inversion of seismic data. Computers and Geosciences, 34(8). https://doi.org/10.1016/j.cageo.2007.07.005

Sokos, E. y Zahradník, J. (2013). Evaluating centroid-moment-tensor uncertainty in the new version of ISOLA software. Seismological Research Letters, 84(4), 656–665. https://doi.org/10.1785/0220130002

Stein S. y Wysession M. (2003). An introduction to seismology earthquakes and earth structure. Blackwell Pub.

Tary, J. B., Mojica Boada, M. J., Vargas, C. A., Montaña Monoga, A. M., Naranjo-Hernandez, D. F. y Quiroga, D. E. (2022). Source characteristics of the MW 6 Mutatá earthquake, Murindo seismic cluster, northwestern Colombia. Journal of South American Earth Sciences, 115, 103728, ISSN 0895-9811. https://doi.org/10.1016/j.jsames.2022.103728

Tilling, R. (2022). Complexity in tsunamis, volcanoes, and their hazards. A volume in the encyclopedia of complexity and systems science (Second Edition). Springer.

Triantafyllis, N., Venetis, I. E., Fountoulakis, I., Pikoulis, E.-V., Sokos, E. y Evangelidis, C. P. (2021). Gisola: A High-Performance Computing Application for Real-Time Moment Tensor Inversion. Seismological. Research Letters. https://doi.org/10.1785/0220210153

Yoshimoto, M., Kumagai, H., Acero, W., Ponce, G., Vásconez, F., Arrais, S., Ruiz, M., Alvarado, A., Pedraza–García, P., Dionicio, V., Chamorro, O., Maeda, Y. y Nakano M. (2017). Depth–dependent rupture mode along the Ecuador–Colombia subduction zone. Geophysical Research Letters, 44(5), 2203–2210. https://doi.org/10.1002/2016GL071929

Descargas

Los datos de descargas todavía no están disponibles.

Artículos similares

<< < 1 2 3 4 5 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.