Geochronology laboratory at the Servicio Geológico Colombiano (Colombian Geological Survey): advances in the U-Pb dating of zircons by the LA-ICP-MS technique

Authors

  • Mary Luz Peña Urueña Servicio Geológico Colombiano
  • Jimmy Alejandro Muñoz Rocha Servicio Geológico Colombiano
  • Cindy Lizeth Urueña Servicio Geológico Colombiano

DOI:

https://doi.org/10.32685/0120-1425/boletingeo.44.2018.7

Keywords:

Ablation, laser, mass spectrometry, dating, geochronology, U/Pb, zircon, LA ICP-MS

How to Cite

Peña Urueña, M. L., Muñoz Rocha, J. A., & Urueña, C. L. (2018). Geochronology laboratory at the Servicio Geológico Colombiano (Colombian Geological Survey): advances in the U-Pb dating of zircons by the LA-ICP-MS technique. Boletín Geológico, (44), 39–56. https://doi.org/10.32685/0120-1425/boletingeo.44.2018.7

Issue

Section

Articles

Published

2018-04-20

Abstract

This paper presents the first results of the implementation of the U-Pb dating laboratory at the Servicio Geológico Colombiano (Colombian Geological Survey) using the LA-ICP-MS analytical technique for U-Pb dating. This geochronological method is based on the radioactive decay of the isotopes of Uranium (238U/206Pb and 235U/207Pb) in order to be used in the zircon age determinations. As part of the implementation process, we evaluated reference materials with different age ranges using analytical parameters similar to those used by other laboratories worldwide with the aim of obtaining results with optimal precision and accuracy for this analytical technique. In general, the results obtained show that for the majority of the reference materials, the precision as the coefficient of variation and the veracity as the difference between the expected age and the obtained age are less than 2 %. In addition, we evaluated the concordance of the U-Pb system using concordance diagrams and we found that the mean square weighted deviation (MSWD) in most standards were less than 2, implying that the results were obtained within the established statistical parameters.

 

References

Black, L. y Gulson, B. (1978). The age of the Mud Tank Carbonatite, Strangways Range, Northern Territor. BMR Journal of Australian Geology & Geophysics, 3(3), 227-232.

Black, L., Kamo, S. L. y Allen, C. M. (2004). Improved Pb-206/U-218 microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards. Chemical Geology, 205(6), 115-140. Doi: 10.1016/j.chemgeo.2004.01.003.

Bouman, C., Schwieters, J., Cocherie, A., Robert, M. y Wieser, M. (2014). In situ U-Pb zircon dating using laser ablation - multi ion counting - ICP - MS (LA-MICICP-MS). Aplication note. Thermo Fisher Scientific. Disponible en https://tools.thermofisher.com/content/sfs/brochures/AN-30021-ICP-MS-U-Pb-Zircon-Dating-AN30021-EN.pdf.

Bruguier, O. (2009). Géochronologie U-Pb par ablation laser et ICP-MS (LA-ICP-MS): Principes, Complexités et Perspectives (tesis). Universidad de Montpellier II, Montpellier, Francia.

Campbell, I. H., Reiners, P. W. y Allen, C. M. (2005). He– Pb double dating of detrital zircons from the Ganges and Indus Rivers: Implication for quantifying sediment recycling and prevenance studies. Earth and Planetary Sciencie Letters, 237(3-4), 402-432. Doi: 10.1016/j.epsl.2005.06.043.

Chang, Z., Vervoort, J. D., McClelland, W. C. y Knaack, C. (2006). U-Pb dating of zircon by LA-ICP-MS. Geochemestry Geophysics Geosystems, 7(5), 1-14. Doi: 10.1029/2005GC001100.

Cherniak, D. J. y Watson, E. B. (2001). Pb diffusion in zircon. Chemical Geology, 172, 5-24.

EURAQUEM/CITAC. (2016). Guide to Quality in Analytical Chemistry an Aid to Accreditation. Disponible en www.eurachem.org.

Frei, D. y Gerdes, A. (2009). Precise and accurate in situ U-Pb dating of zircon with high sample throughput by automated LA-SF-ICP-MS. Chemical Geology, 261(3-4), 261-270. Doi: 10.1016/j.chemgeo.2008.07.025.

Gehrels, G., Valencia, V. A. y Ruiz, J. (2008). Enhanced precision, accuracy, efficiency, and spatial resolution of U-Pb ages by laser ablation-multicollector-inductively coupled plasma-mass spectrometry. Geochemistry, Geophysics, and Geosystems, 9(3). Doi: 10.1029/2007GC001805.

Hellstrom, J. E. (2008). Iolite: Software for spatially resolved LA‐ (quad and MC) ICP-MS analysis. En P. Sylvester (Ed.), Laser Ablation ICP-MS in the Earth Sciences: Current Practices and Outstanding Issues. Vancouver: Mineralogical Association of Canada.

Horstwood, M. (2008). Data reduction strategies, uncertainty assessment and resolution of LA–(MC–) ICP– MS isotope data. En P. Sylvester (Ed.), Laser ablation– ICP–MS in the Earth Sciences: Current practices and outstanding issues. Vancouver: Mineralogical Association of Canada.

Horstwood, M., Kosler, J., Gehrels, G., Jackson, S. y McLean, N. M. (2016). Community-derived standards for LA-ICP-MS U-(Th-)Pb geochronology – uncertainty propagation, age interpretation and data reporting. Geostandards and Geoanalytical Research, 40(3), 311-332. Doi: 10.1111/j.1751-908X.2016.00379.x.

Jackson, S. E., Pearson, N. J., Griffin, W. L. y Belousova, E. A. (2004). The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. Chemical Geology, 211(1-2), 47-69. Doi: 10.1016/j.chemgeo.2004.06.017.

Jaffey, A. H. (1971). Precision measurement of half - lives and specific activities of 235U and 238U. Physical Review C, 4(5), 1889-1906. Doi: 10.1103/PhysRevC.4.1889.

Klotzli, U., Klotzli, E., Gunes, Z. y Kosler, J. (2009). Accuracy of laser ablation U-Pb zircon dating: Results from a test using five different reference zircons. Geostandards and Geoanalytical Research, 33(1), 5-15. Doi: 10.1111/j.1751-908X.2009.00921.x.

Kosler, J. (2007). Laser Ablation IPC-MS - a new dating tool in Earth Science. Proceedings of the Geologist Asoociation, 118(1), 19-24. Doi: 10.1016/S0016- 7878(07)80043-5.

Kosler, J. y Sylvester, P. J. (2003). Present trends and the future of zircon in geochronology: Laser ablation ICPMS. Reviews in Mineralogy and Geochemistry, 53(1), 243-275. Doi: 10.2113/0530243.

Lanphere, M. y Baadsgaard, H. (1999). The Fish Canyon Tuff: A standard for geochronology. Bulletin of Liaison and Informations, Phanerozoic Time Scale, 15(2), 20-21.

Lee, M. S. (2012). Mass Spectrometry Handbook (Vol. 1). New Jersey: Wiley.

Ludwig, K. R. (2012). User’s manual for Isoplot 3.75: A geochronological toolkit for Microsoft Excel. Special Publication, Issue 5. Berkeley: Berkeley Geochronology Center.

Marillo-Sialer, E., Woodhead, J., Hergt, J., Greig, A., Guillong, M. y Gleadow, A. (2014). The zircon ‘matrix effect’: Evidence for an ablation rate control on the accuracy of U–Pb age determinations by LA-ICP-MS. Journal of Analytical Atomic Spectrometry, 29(6), 943- 1140. Doi: 10.1039/C4JA00008K.

Mattinson, J. M. (2005). Zircon U–Pb chemical abrasion (“CA-TIMS”) method: Combined annealing and multi-step partial dissolution analysis for improved precision and accuracy of zircon ages. Chemical Geology, 220(1-2), 47-66. Doi: 10.1016/j.chemgeo.2005.03.011.

Moser, D. y Scott, D. (2001). Towards a more accurate U– Pb geochronology. Chemical Geology, 172(1-2), 1-3. Doi: 10.1016/S0009-2541(00)00232-1.

Nygren, U., Rameback, H., Berglund, M. y Baxter, D. C. (2006). The importance of a correct dead time setting in isotope ratio mass spectrometry: Implementation of an electronically determined dead time to reduce measurement uncertainty. International Journal of Mass Spectrometry, 257(1-3), 12-15. Doi: 10.1016/j. ijms.2006.05.011.

Paces, J. B. y Miller Jr., J. D. (1993). Precise U–Pb ages of Duluth Complex and related mafic intrusions, northeastern Minnesota: geochronological insights into physical, petrogenetic, paleomagnetic and tectonomagmatic processes associated with the 1.1 Ga Midcontinent Rift System. Journal of Geophysical Research, 98(B8), 13997-14013. Doi: 10.1029/93JB01159.

Paton, C., Woodhead, J. D. Hellstrom, J. C. Hergt, J. M., Greig, A. y Maas, R. (2010). Improved laser ablation U‐Pb zircon geochronology through robust downhole fractionation correction. Gechemistry Geophysics Geosystems, 11(3), 1-36. Doi: 10.1029/2009GC002618.

Pearce, N. J. G., Perkins, W. T., Westgate, J. A., Gorton, M. P., Jackson, S. E. y Neal, C. R. (1997). A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostandards and Geonalytical Research, 21(1), 115-144. Doi: 10.1111/j.1751-908X.1997.tb00538.x.

Putirka, K. (2015). Data, ideas, and the nature of scientific progress. American Mineralogist, 100(8-9), 1657- 1658. Doi: 10.2138/am-2015-Ed1008-94.

Renne, P. R., Swisher, C. C., Deino, A. L., Karner, D. V., Owens, T. L. y DePaolo, D. J. (1998). Intercalibration of standards, absolute ages and uncertainties in 40Ar/39Ar dating. Chemical Geology, 145(1-2), 117- 152. Doi: 10.1016/S0009-2541(97)00159-9.

Schaltegger, U., Schmitt, A. K. y Horstwood, M. (2015). U–Th–Pb zircon geochronology by ID-TIMS, SIMS, and laser ablation ICP-MS: Recipes, interpretations, and opportunities. Chemical Geology, 402, 89-110. Doi: 10.1016/j.chemgeo.2015.02.028.

Schoene, B. (2014). U-Th-Pb Geochronology. En K. K. Turekian y H. D. Holland (Eds.), Treatise on Geochemistry. Vol. 4. Oxford: Elsevier.

Sláma, J. y Kosler, J. (2012). Effects of sampling and mineral separation on accuracy of detrital zircon studies. Geochemistry, Geophysics, Geosystems, 13(5), Q05007. Doi: 10.1029/2012GC004106.

Sláma, J. Kosler, J., Condon, D. J., Crowley, J. L., Gerdes, A. y Hanchar, J. M. (2008.). Plešovice zircon — A new natural reference material for U–Pb and Hf isotopic microanalysis. Chemical Geology, 249(1-2), 1-35. Doi: 10.1016/j.chemgeo.2007.11.005.

Solari, L. A., Gómez-Tuena, A., Bernal, J. P., Pérez-Arvizu, O. y Tanner, M. (2010). U-Pb Zircon Geochronology with an Integrated LA-ICP-MS Microanalytical Workstation: Achievements in Precision and Accuracy. Geostandards and Geoanalytical Research, 34(1), 5-18. Doi: 10.1111/j.1751-908X.2009.00027.x.

Solari, L. A., Ortega-Obregón, C. y Bernal, J. P. (2015). U-Pb zircon geochronology by LAICPMS combined with thermal annealing: Achievements in precision and accuracy on dating standard and unknown samples. Chemical Geology, 414, 109-123. Doi: 10.1016/j.chemgeo.2015.09.008.

Spencer, C. J., Kirkland, C. L. y Taylor, R. J. (2015). Strategies towards statiscally robust interpretations of in situ U-Pb zircon geochronology. Geoscience Frontiers, 7(4), 581-589. Doi: 10.1016/j.gsf.2015.11.006.

Sylvester, P. J. (2008). Laser ablation–ICP–MS in the Earth Sciences: Current practices and outstanding issues. Vancouver: Mineralogical Association of Canada. Geostandards and Geoanalytical Research, 29(1), 41- 52. Doi: 10.1111/j.1751-908X.2005.tb00654.x.

Wendt, I. y Carl, C. (1992). The statistical distribution of the mean squared weighted deviation — Reply. Chemical Geology, 94(3), 242-243. Doi: 10.1016/S0009- 2541(10)80009-9.

Wetherill, W. G. (1956). Discordant Uranium - Lead Ages, I. Earth & Space Science News, 37(3), 320-326. Doi: 10.1029/TR037i003p00320.

Downloads

Download data is not yet available.

Most read articles by the same author(s)

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.