Geochemistry and speleogenesis of quartz arenite caves in the Serranía de Chiribiquete, sector of the Caquetá and Yarí rivers, Colombia

Authors

DOI:

https://doi.org/10.32685/0120-1425/bol.geol.51.2.2024.743

Keywords:

espeleogénesis, cuarzo, hidroquímica, arenización, espeleotemas, Formaciones de Hierro Bandeado (BIF)
Cueva de los Guácharos, Serranía de Chiribiquete, Caquetá, Colombia

How to Cite

Sauro, F., & Lasso, C. A. (2024). Geochemistry and speleogenesis of quartz arenite caves in the Serranía de Chiribiquete, sector of the Caquetá and Yarí rivers, Colombia . Boletín Geológico, 51(2). https://doi.org/10.32685/0120-1425/bol.geol.51.2.2024.743

Published

2024-12-22

Abstract

The area objective of this research was the Resguardo Indígena Monochoa, south of the Chiribiquete National Park, a quartz arenite massif (Araracuara Formation) crossed by the Caquetá and Yarí rivers. The first expedition (February 2022) studied Cueva de Los Guácharos, a resurgence that opens at the bottom of the Araracuara canyon along the Caquetá river. In February 2023, a scientific expedition formed by Uitoto and Andoque indigenous people and Colombian and Italian speleologists, went up the Yarí river to the Gamitana rapids, reaching the Yarì tepuyes. Two large horizontal caves were explored and surveyed. The first was a large tunnel of about 600 m in total length, the second was reached at the base of a large chasm, giving access to an active horizontal tunnel, which was surveyed for about 400 m outwards from the resurgence at the base of the mountain, after a distance of almost 1 km. In addition to exploration, several scientific investigations are being carried out on hydrochemistry, biospeleology, geology of the area, petrography of the quartz arenites and on the extraordinary opal speleothems (similar to those already discovered in Venezuela). Preliminary data show that speleogenesis is produced by intergranular quartz dissolution, leading to ‘arenization’ and subsequent accelerated erosion of specific layers. The presence of a Banded Iron Formation layer favours the formation of caves in a specific stratigraphic interval.

References

Aubrecht, R., Barrio-Amorós, C.L., Breure, A.S.H., Brewer-Carías, C., Derka, T., Fuentes-Ramos, O.A., Gregor, M., Kodada, J., Kováčik, L., Lánczos, T., Lee, N.M., Liščák, P., Schlögl, J., Šmída, B. and Vlček, L., (2012). Venezuelan tepuis: their caves and biota. Acta Geologica Slovaca Monograph, Comenius University, Bratislava, 168 pp.

Burley, S. D., & Kantorowicz, J. D. (1986). Thin section and SEM tex-tural criteria for the recognition of cement‐dissolution porosity in sandstones. Sedimentology, 33(4), 587-604.

Ertel, J., Hedges, J., Devol, A., Richey, J., de Nazare Goes Ribeiro, M., Ribeiro, G., (1986). Dissolved humic substances of the Amazon River system. Limnology and Oceanography 31(4), 739-754.

Galvis, J., Huguett, A. y Ruge, P. (1979). Geología de la Amazonía colombiana. Boletín Geológico, 22(3): 3-86.

Gansser, A., (1974). The Roraima problema (South America). Mitteilungen aus dem Geologischen Institut der ETH und der Univ. Zürich; neue Folge, 177: Verhandlungen der Naturforschenden Gesellschaft, Basel, Vol. 84, l, 80-100.

Ibáñez-Mejía, M., Ruiz, J., Valencia, V.A., Cardona, A., Gehrels, G.E. y Mora, A.R. (2011). El Orógeno Putumayo de Amazonia y sus im-plicaciones para las reconstrucciones de Rodinia: New U- Pb geochronological insights into the Proterozoic tectonic evolution of northwestern South America. Precambrian Research, 191(1-2): 58-77.

Lafuente B, Downs RT, Yang H, Stone N. 1. The power of databases: The RRUFF project. Highlights in mineralogical crystallography. De Gruyter (O), (2015), pp. 1-30.

Martini, J.E.J., (1979). Karst in Black Reef quarzite near Kaapsehoop, Eastern transval. Annals of South African Geological Survey, 13: 115-128.

Mecchia, M., Sauro, F., Piccini, L., De Waele, J., Sanna, L., Tisato, N., Lira, J. and Vergara, F., (2014). Geochemistry of surface and sub-surface waters in quartz-sandstones: significance for the geo-morphic evolution of tepui table mountains (Gran Sabana, Venezue-la). Journal of Hydrology, 511: 117-138.

Mojica, J. y Villarroel, C., (1990). Sobre la distribución y facies del Pa-leozoico Inferior sedimentario en el extremo NW de Sudamérica. Geología Colombiana, 17: 219-226.

Muñoz-Saba, Y., I. González-Sánchez y N. Calvo-Roa (Editores) (2013). Serie Guías de Campo del Instituto de Ciencias Naturales, Universidad Nacional de Colombia N° 13. Bogotá, 325 pp. Bogotá, 325 pp.

Polok, M., Wójcicki, J., Słupińska, M. (2012). Cave Sniper. EuroSpeleo Magazine 1(1): 76-78.

Reardon, E.J. (1979). Complexing of Silica by Iron(III) in Natural Wa-ters. Chemical Geology, 25: 339-345.

Santos, J. O. S., Potter, P. E., Reis, N. J., Hartmann, L. A., Fletcher, I. R., & McNaughton, N. J. (2003). Age, source, and regional stratig-raphy of the Roraima Supergroup and Roraima-like outliers in northern South America based on U-Pb geochronology. Geological Society of America Bulletin, 115(3), 331-348.

Sauro, F., (2014). Structural and lithological guidance on speleogenesis in quartz–sandstone: Evidence of the arenisation process. Geomor-phology, 226: 106-123.

Sauro, F., Lundberg, J., De Waele, J., Tisato, N. y Galli, E., (2013). Speleogenesis and speleothems of the Guacamaya Cave, Auyan Tepuy, Venezuela, Proceedings of the 16th International Congress of Speleology, Brno, pp. 298-304.

Sauro, F., (2014). Structural and lithological guidance on speleogenesis in quartz–sandstone: Evidence of the arenisation process. Geomor-phology, 226: 106-123.

Urbani, F. and Szczerban, E., (1974). Venezuelan caves in non-carbonate rocks: a new field in karst research. NSS News, 32: 233-235.

Urbani, F., 1986. Notas sobre el origen de las cavidades en rocas cuarcí-feras precámbricas del Grupo Roraima, Venezuela. Interciencia, 11(6): 298-300.

Vergara, J. G. (1994). Chiribiquete y zonas aledañas. Rev. Acad. Co-lomb. Cienc, 19(73).

White, W.B., Jefferson, J.l., Haman, J.F., (1966). Quartzite karst in Southeastern Venezuela. International Journal of Speleology, 2: 309-314.

Withe, A. F., & Peterson, M. (1990). The role of reactive surface areas in chemical weathering. Chemical Geology, 84(1-4), 334-336.

Wray, R.A. y Sauro, F. (2017). An updated global review of solutional weathering processes and forms in quartz sandstones and quartzites. Earth-Science Reviews, 171: 520-557.

Wray, R.A.L., (2009). Conductos de drenaje freático en areniscas cuar-zosas: Evidence from the Jurassic Precipice Sandstone, Carnarvon Range, Queensland, Australia. Geomorphology, 110(3): 203-211.

Downloads

Download data is not yet available.

Most read articles by the same author(s)

Similar Articles

1 2 3 4 5 6 7 8 > >> 

You may also start an advanced similarity search for this article.