Analytical solution of CO2 mass flux measurement with Non-Dispersive Infrared sensors for soil in diffusive and advective-diffusive regime: Tool for the continuous and telemetric measurement of volcanic gases in an open chamber

Authors

DOI:

https://doi.org/10.32685/0120-1425/bol.geol.48.2.2021.496

Keywords:

Volcanic monitoring, volcanic activity diagnosis, embedded system, CO2 mass flux

Downloads

How to Cite

Oliveras, N. (2021). Analytical solution of CO2 mass flux measurement with Non-Dispersive Infrared sensors for soil in diffusive and advective-diffusive regime: Tool for the continuous and telemetric measurement of volcanic gases in an open chamber. Boletín Geológico, 48(2), 41–59. https://doi.org/10.32685/0120-1425/bol.geol.48.2.2021.496

Issue

Section

Articles

Published

2021-09-24

Abstract

Measuring the carbon dioxide (CO2) mass flux in a volcanic environment is necessary for volcanic monitoring. CO2 mass flux must be measured continuously and telemetrically to get, almost in real-time, a better understanding of the dynamics of the volcanic degassing processes, contributing to the building, together with other monitoring technics, of a volcano behavior model. This study presents two analytical solutions, 1) a simple diffuse solution and 2) an advective-diffusive solution, which both implement NDIR (Non-Dispersive Infrared Emitter) sensor arrays in an open chamber (diffusion chimney) and an exchange chamber (gas interchanger). The first system, for which the gas speed is negligible, despite being basic (with values reflected in the slope of an equation line), introduces mass flux calculations with a single sensor NDIR. For the second system, where the gas speed is part of the equation, another mathematical solution and three measuring points are required, which demands the system to include a se­cond NDIR sensor for the correct mathematical solution of the equations system. In addition, an embedded system can automate the method by calibrating, controlling an agitation fan, and recording temperature, pressure, and mass flux in volcanic soils at the surface. Since this theoretically proposed method needs to be tested, experimental data are expected to validate the measurement of CO2 mass flux, which will be used as a helpful tool for volcanic monitoring.

Author Biography

Nicolás Oliveras, Consultant, Popayán, Colombia

Is an Electronics and Telecommunications Engineer, Specialist in Industrial Informatics from the Universidad del Cauca, Colombia, with more than 20 years of professional experience. He works in the Servicio Geológico Colombiano, Popayán, as a member of the Electronics Group, with a focus on real-time acquisition, geophysical and geochemical data, together with the metrological management. He has focused on the development of solutions based on technological innovation, its physical-mathematical conceptualization, the design of the architecture, and the development and implementation of different hardware and software systems for applications, such as the design of telemetric data networks for scientific purposes, the design of protection and electrical systems for solar energy, and the applications of early warning systems for volcanic mudflows, among others. Since 2000, he has worked at his company Schüler Weage E.I., in the design of software and robust instrumentation for geoscientific monitoring of volcanoes, through the acquisition and real-time processing of seismic, geophysical, and geochemical data in active volcanoes in Latin America.

References

Allard P., Carbonnelle J., Dajlevic D., Le Bronec J., Morel P., Robe M. C., Maurenas J. M., Faivre-Pierret R., Martin D., Sabroux J. C., & Zettwoog P. (1991). Eruptive and diffuse emission of CO2 from Mount Etna. Nature, 351, 387-391. https://doi.org/10.1038/351387a0

Badalamenti, B., Gurrieri, S., Hauser, S., & and Valenza, M. (1988). Ground CO2 output in the island of Vulcano during the period 1984-1988: Gas hazard and volcanic activity surveillance implications. Rend. Società Italiana di Mineralogia e Petrologia, 43, 893-899.

Baubron, J. C., Allard, P., & Toutain, J. P. (1990). Diffuse volcanic emissions of carbon dioxide from Vulcano island, Italy. Nature, 344, 51-53. https://doi.org/10.1038/344051a0

Badalamenti, B., Gurrieri, S., Nuccio, P. M., & Valenza, M. (1991). Gas hazard on Vulcano Island. Nature, 350, 26-27.

Bekku, Y., Koizumi, H., Nakadai, T., & Iwaki, H. (1955). Measurement of soil respiration using close chamber method: An IRGA technique. Ecological Research, 10(3), 369-373. https://doi.org/10.1007/BF02347863

Busquets D. (2011). Difusión: 2° ley de Fick. Universidad Politécnica de Valencia. www.youtube.com/watch?=HHBvZDNvTic

Camarda, M., De Gregorio, S., Favara, R., & Gurrieri, S. (2007). Evaluation of carbon isotope fractionation of soil CO2 under an advective–diffusive regimen: A tool for computing the isotopic composition of unfractionated deep source. Geochimica et Cosmochimica Acta, 71(12), 3016-3027. https://doi.org/10.1016/j.gca.2007.04.002

Camarda, M., Gurrieri, S., & Valenza, M. (2006). CO2 flux measurements in volcanic areas using the dynamic concentration method: Influence of soil permeability. Journal of Geophysical Research: Solid Earth, 111(B5), B05202. https://doi.org/10.1029/2005JB003898

Campbell, G. S. (1985). Soil physics with basic transport models for soil-plant systems. Elsevier.

Callister W. D. (1995). Introducción a la Ciencia e Ingeniería de los materiales. Reverte.

Cardellini, C., Chiodini, G., & Frondini, F. (2003). Application of stochastic simulation to CO2 flux from soil: Mapping and quantification of gas release. Journal of Geophysical Research. Solid Earth, 108(B9), 2425.

Chiodini, G., & Frondini, F. (2001). Carbon dioxide degassing from the Albani Hills volcanic region, Central Italy. Chemical Geology, 177(1-2), 67-83. https://doi.org/10.1016/S0009-2541(00)00382-X

Chiodini, G., Cioni, R., Guidi, M., Raco, B., & Marini, L. (1998). Soil CO2 flux measurements in volcanic and geothermal areas. Applied Geochemistry, 13(5), 543-552. https://doi.org/10.1016/S0883-2927(97)00076-0

Ciotoli, G., Guerra, M., Lombardi, S., & Vittori, E. (1998). Soil gas survey for tracing seismogenic faults: A case-study in the Fucino basin (central Italy). Journal of Geophysical Research, 103(B10), 23 781-23 794. https://doi.org/10.1029/98JB01553

Ciotoli, G., Della Seta, M., Del Monte, M., Fredi, P., Lombardi, S., Palmieri, E. L., & Pugliese, F. (2003), Morphological and geochemical evidence of neotectonics in the volcanic area of Monti Vulsini (Latium,Italy). Quaternary International, 101-102, 103-113. https://doi.org/10.1016/S1040-6182(02)00093-9

Cropper Jr., W. P., Ewel K. C., & Raich, J. W. (1985). The measurement of soil CO2 evolution in situ. Pedobiologia 28, 35-40.

Diliberto, I. S., Gurrieri, S., & Valenza, M. (1993). Vulcano: Gas geochemistry. CO2 flux from the ground. Acta Vulcanologica, 3, 272-273.

García, I. (2020). Fenómenos de transporte y conductividad electrolítica. Universidad de Valencia.

Gerlach, T. M., Doukas, M. P., McGee, K. A., & R. Kessler. (2001). Soil efflux and total emission rates of magmatic CO2 at the Horseshoe Lake tree kill, Mammoth Mountain, California, 1995-1999. Chemical Geology, 177(1-2), 101- 116. https://doi.org/10.1016/S0009-2541(00)00385-5

Giammanco, S., Gurrieri, S., & Valenza, M. (1995). Soil CO2 degassing on Mt. Etna (Sicily) during the period 1989-1993: Discrimination between climatic and volcanic influences. Bulletin of Volcanology, 57, 52-60. https://doi.org/10.1007/BF00298707

Giammanco S., Gurrieri, S., & Valenza, M. (1998). Anomalous soil CO2 degassing in relation to faults and eruptive fissures on Mount Etna (Sicily, Italy). Bulletin of Volcanology, 60, 252-259. https://doi.org/10.1007/s004450050231

Guerra, M., & Lombardi, S. (2001). Soil-gas method for tracing neotectonic faults in clay basins: The Pisticci field (southern Italy). Tectonophysics, 339(3-4), 511-522. https://doi.org/10.1016/S0040-1951(01)00072-5

Gurrieri, S., & Valenza, M. (1988). Gas transport in natural porous medium: a method for measuring soil CO2 flows from the ground in volcanic and geothermal areas. Rendiconti della Societa Italiana di Mineralogia e Petrologia, 43, 1151-1158.

Hernández, P., Notsu, K., Salazar, J., Mori, T., Natale, G., Okada, H., Virgili, G., Shimoike, Y., Sato, M., & Pérez, N. (2001). Carbon dioxide degasing by advective flow from Usu Volcano, Japan. Science, 292(5514): 83-86. https://doi.org/10.1126/science.1058450

Inguaggiato, S., Jácome Paz, M. P., Mazot, A., Delgado Granados, H., Inguaggiato, C., & Vita. F. (2013). CO2 output discharged from Stromboli Island (Italy). Chemical Geology, 339, 52-60. https://doi.org/10.1016/j.chemgeo.2012.10.008

Isachenko V., Osipova V., & Sukomel A. (1980). Heat Transfer. Mir Publisher.

Jácome Paz, M. P., Taran, Y., Inguaggiato, S., & Collard. N. (2016). CO2 flux and chemistry of El Chichón Crater Lake (México) in the period 2013-2015: Evidence for the enhanced volcano activity. Geophysical Research Letters, 43(1), 27-134. https://doi.org/10.1002/2015GL066354

Janssens, I., Kowalski, A., Longdoz, B., & Ceulemans, R. (2000). Assessing forest soil CO2 efflux: an in-situ comparison of four techniques. Tree Physiology, 20(1), 23-32. https://doi.org/10.1093/treephys/20.1.23

Hernández, P. A, Salazar, J. M., Shimoike, Y., Mori, T., Notsu, K., & Pérez, N. M. (2001). Diffuse emission of CO2 from Miyakejima volcano, Japan. Chemical Geology, 177(1-2), 175-185. https://doi.org/10.1016/S0009-2541(00)00390-9

Moreno, J. (2005). Metodología para el cálculo de incertidumbre. Encuentro Nacional de metrología eléctrica, México.

Nakadai, T., Koizumi, H., Usami, Y., Satoh, M., & Oikawa, T. (1993). Examination of the method for measuring soil respiration in cultivated land: Effect of carbon dioxide concentration on soil respiration. Ecological Research, 8(1), 65- 71. https://doi.org/10.1007/BF02348608

Norman, J. M., García, R., & Verma, S. B. (1992). Soil surface CO2 fluxes and the carbon budget of a grassland. Journal of Geophysical Research: Atmospheres, 97(D17), 18 845- 18 853. https://doi.org/10.1029/92JD01348

Notsu, K., Mori, T., Chanchah, D., Vale, S., Kagi, H., & Ito, T. (2006). Monitoring quiescent volcanoes by diffuse CO2 degassing: case study of Mt. Fuji, Japan. Pure and Applied Geophysics, 163(4), 825-835. https://doi.org/10.1007/s00024-006-0051-0

Rogie, J. D., Kerrick, D. M., Sorey, G., Chiodini, M. L., & Galloway, D. L. (2001). Dynamics of carbon dioxide emission at Mammoth Mountain Continuous monitoring of diffuse CO2 degassing, Horseshoe Lake, Mammoth Mountain, California. Earth and Planetary Science Letters, 188(3-4), 531-541. https://doi.org/10.1016/S0012-821X(01)00344-2

Sahimi, M. (1995). Flow and Transport in Porous Media and Fractured Rock: From Classical Methods to Modern Approaches. Wiley‐VCH Verlag GmbH & Co. https://doi.org/10.1002/9783527636693

Salazar, J. M. L., Pérez, N. M., Hernández, P. A., Soriano, T., Barahona, F., Olmos, R., Cartagena, R., López, D. L., Lima, R. N., Melián, G., Galindo, I., Padrón, E., Sumino, H., & Notsu, K. (2002). Precursory diffuse carbon dioxide degassing signature related to a 5.1 magnitude earthquake in El Salvador, Central America. Earth and Planetary Science Letters, 205(1-2), 81-89. https://doi.org/10.1016/S0012-821X(02)01014-2

Spicák, A., & Horálek, J. (2001). Possible role of fluids in the process of earthquakes swarm generation in the West Bohemia/ Vogtland seismoactive region. Tectonophysics, 336(1-4), 151-161. https://doi.org/10.1016/S0040-1951(01)00099-3

Tonani, F., & Miele, G. (1991). Methods for measuring flow of carbon dioxide through soils in the volcanic setting. International Conference Active Volcanoes and Risk Mitigation, IAVCEI, Naples, Italy.

Wakita, H. (1996). Geochemical challenge to earthquake prediction. PNAS, 93(9), 3781-3786. https://doi.org/10.1073/ pnas.93.9.3781

West Systems. (2012). Portable difusse flux meter with LI-COR CO2 detector. HandBook.

Witkamp, M. (1966). Decomposition of leaf litter in relation to environment, microflora and microbial respiration. Ecology, 47(2), 194-201. https://doi.org/10.2307/1933765

World Meteorological Organization (WMO). (2019). The State of Greenhouse Gases in the Atmosphere Based on Global Observations through 2018. WMO Greenhouse Gas Bulletin, (15).

Downloads

Download data is not yet available.

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.