Seismic hazard assessment of the urban area of Ambato, Ecuador, in deterministic form
DOI:
https://doi.org/10.32685/0120-1425/bol.geol.48.2.2021.594Keywords:
Deterministic seismic hazard, acceleration spectraDownloads
How to Cite
Issue
Section
Published
Abstract
Seismic microzonation of the urban area of Ambato, Ecuador, was done in 2018 in a probabilistic and a deterministic manner. This type of calculation is presented in the first part of the article. For this purpose, three geologic faults and three strong-motion equations were considered. For each geologic fault, recurrence periods are determined using two methods. It is seen that a magnitude 6.3 earthquake associated with the blind faults traversing Ambato may occur in 80 to 100 years, and one of magnitude 6.5 in the next 300 years. Geophysical and geotechnical studies of the urban area of the city of Ambato are presented. These permitted the acquisition of curves with the same period of soil vibration and equal speed of the shear wave in the first 30 m, plus the classification of soils of the city. Later, six models of strong soil movements were considered and horizontal acceleration spectra of the soil were obtained in a mesh of points separated every 500 m, for each soil profile. Average spectra were found for soil profiles C, D and E when making comparisons with the spectra found in the 2018 study. Based on the results of the present study and those from 2018, new spectral forms are proposed for the urban area of the city of Ambato (called spectral envelopes) and compared to spectra reported by seismic regulations in force in Ecuador (NEC-15).
Author Biographies
Roberto Aguiar Falconi, Department of Earth Sciences and Construction, Universidad de las Fuerzas Armadas ESPE, Sangolquí, and Faculty of Engineering, Universidad Laica Eloy Alfaro de Manabí, Manabí, Ecuador
Doctor in Seismic Engineering from the Polytechnic University of Catalonia. Master of Science from the Universidad Central de Venezuela and structural engineer at the National Polytechnic School. Ex-director of the National Secretariat of Science and Technology of Ecuador. Ex-director and founder of the Scientific Research Center of the University of the Armed Forces, ESPE. Author of 22 books on ResearchGate and more than 100 articles published internationally. Winner of a Certificate of Distinction from the Sasakawa Prize awarded by the United Nations in Geneva.
Paola Serrano Moreta , Universidad de las Fuerzas Armadas ESPE, Sangolquí, Ecuador
Postgraduate student at the Universidad de las Fuerzas Armadas, ESPE. Civil engineer at the Universidad Técnica de Ambato. Has participated in the project of strengthening the IESS of Ambato, and is a private consultant of engineering projects.
References
Abrahamson, N., Silva, W., & Kamai, R. (2013). Update of the AS08 Ground Motion Prediction Equations based on the NGA-West2 Data Set. Pacific Earthquake Engineering Research Center, PEER.
Aguiar, R. (2017). No se acepta el diseño por ductilidad. Caso del Edificio Fragata que incursionó en el rango no lineal. Revista Internacional de Ingeniería de Estructuras, 22(3), 327-391.
Aguiar, R. (2018). Vulnerabilidad sísmica de Ambato [Consulting carried out for Ambato].
Aguiar, R., & Rivas, A. (2018). Espectros de peligro sísmico uniforme para la ciudad de Ambato. In R. Aguiar, & A. Rivas (eds.), Microzonificación sísmica de Ambato (pp. 103-119). Instituto Panamericano de Geografía e Historia.
Aguiar, R., & Zambrano, V. (2018). Relation H/T in structures of Bahía de Caráquez and the 2016 earthquake. Revista Internacional de Ingeniería de Estructuras, 23(2), 227-241.
Aguiar, R., Zevallos, M., Palacios, J., García, L., & Menéndez, E. (2016). Reforzamiento de estructuras con disipadores de energía. Caso del terremoto del 16 de abril de 2016. Instituto Panamericano de Geografía e Historia (IPGH).
Akkar, S., Sandıkkaya, M., & Bommer, J. (2014). Empirical ground-motion models for point- and extended-source crustal earthquake scenarios in Europe and the Middle East. Bulletin of Earthquake Engineering, 12, 359-387. https://dx.doi.org/10.1007/s10518-013-9461-4
Alvarado, A., Audin, L., Nocquet, J., Lagreulet, S., Segovia, M., Font, Y., Lamarque, G., Yepes, H., Mothes, P., Rolandone, F., Jarrin, P., & Quidelleur, X. (2014). Active tectonics in Quito, Ecuador, assessed by geomorphological studies, GPS data, and crustal seismicity. Advancing Earth and Space Science, 33, 67-83, https://doi.org/10.1002/2012TC003224
Beauval, C., Mariniere, J., Yepes, H., Audin, L., Nocquet, J., Alvarado, A., Baize, S., Aguiar, J., Singaucho, J. C., & Jomard, H. (2018). A New Seismic Hazard Model for Ecuador. Bulletin of the Seismological Society of America, 108(3A), 1443-1464. https://doi.org/10.1785/0120170259
Boore, D., & Atkinson, G. (2008). Ground Motion Prediction Equations for the Average Horizontal Component of PGA, PGV, and 5 %-Damped PSA at Spectral Periods between 0.01 s and 10.0 s. Earthquake Spectra, 24(1), 99-138. https://doi.org/10.1193/1.2830434
Campbell, K., & Bozorgnia, Y. (2013). NGA-West2 Ground Motion Model for the Average Horizontal Components of PGA, PGV, and 5 % damped linear acceleration response spectra. Earthquake Spectra, 30(3), 1087-1115. https://doi.org/10.1193/062913EQS175M
Choiu, B., & Youngs, R. (2014). Update of the Choiu and Youngs NGA ground motion model for average horizontal component of peak ground motion and response spectra. Earthquake Spectra, 30(3), 1117. https://doi.org/10.1193/072813EQS219M
Chunga, K., & Mulas, F. (2018). Zonificación geológica, volcánica y sísmica. In R. Aguiar, & A. Rivas (eds.), Microzonificación Sísmica de Ambato (pp. 120-172). Instituto Panamericano de Geografía e Historia.
Cosentino, P., Ficarra, V., & Luzio, D. (1977). Truncated Exponential Frequency-Magnitude Relationship in Earthquake Statistics. Bulletin of the Seismological Society of America, 67(6), 1615-1623.
Eguez, A., Alvarado, A., & Yepes, H. (2003). Database and Map of Quaternary Faults and Folds of Ecuador and its offshore regions [Open File Report]. U. S. Geological Survey.
Federal Emergency Management Agency of the U.S. Department of Homeland Security (FEMA). (2015). NEHRP Recommended seismic provisions for new buildings and other structures Volume I: Part 1 Provisions, Part 2 Commentary.
Gutenberg, B., & Richter, F. (1944). Frequency of Earthquakes in California. Bulletin of the Seismological Society of America, 34(4), 185-188. https://doi.org/10.1785/BSSA0340040185
Leonard, M. (2010). Earthquake fault scaling: Self-consistent relating of rupture length, width average displacement and moment release. Bulletin of the Seismological Society of America, 100(5A), 1971-1988. https://doi.org/10.1785/0120090189
NEC-15. (2015). Norma ecuatoriana de la construcción SE-DS. Cargas sísmicas. Diseño sismo resistente. NEC-SE-DS.
Rivas, A. (2014). Contribución metodológica para incorporar fallas activas en la modelización de la fuente dirigida a estimaciones de peligrosidad sísmica. Aplicación al sur de España [Ph.D. Thesis]. Universidad Politécnica de Madrid.
Wells, D., & Coppersmith, J. (1994). New Empirical Relationship among Magnitude, Rupture Length, Rupture Width, Rupture Area, and Surface Displacement. Bulletin of the Seismological Society of America, 84(4), 974-1002.
Zhao, J., Zhang, J., Asano, A., Ohno, Y., Oouchi, T., Takahashi, T., Ogawa, H., Irikura, K., Hong, K., Somerville, P., Fukushima, Y., & Fukushima, Y. (2006). Attenuation Relations of Strong Ground Motion in Japan Using Site Classification Based on Predominant Period. Bulletin of the Seismological Society of America, 96(3), 898-913. https://doi.org/10.1785/0120050122
Zhao, J., Zhou, S., Gao, P., Long, T., Zhang, Y., Thio, H., Lu, M., & Rhoades, A. (2015). An earthquake classification scheme adapted for Japan determined by the goodness-of-fit for ground-motion prediction equations. Bulletin of the Seismological Society of America, 105(5), 2750-2763. https://doi.org/10.1785/0120150013
Zhao, J., Zhou, S., Zhou, J., Zhao, C., Zhang, H., Zhang, Y., Gao, P., Lan, X., Rhoades, D., Fukushima, Y., Somerville, P., & Irikura, K. (2016). Ground-Motion Prediction Equations for Shallow Crustal and Upper-Mantle Earthquakes in Japan Using Site Class and Simple Geometric Attenuation Functions. Bulletin of the Seismological Society of America, 106(4), 1552-1569. https://doi.org/10.1785/0120150063