The Upper Cretaceous (Santonian-Maastrichtian) phosphate deposits in the west of the Neiva subbasin, Upper Magdalena Valley, Colombia
DOI:
https://doi.org/10.32685/0120-1425/bol.geol.49.2.2022.621Keywords:
Phosphates, Neiva subbasin, Upper Magdalena Valley, Upper Cretaceous, facies, stratigraphy
License
Copyright (c) 2022 Servicio Geológico Colombiano

This work is licensed under a Creative Commons Attribution 4.0 International License.
Downloads
Additional Files
How to Cite
Issue
Section
Published
Abstract
It has long been known that economically exploitable phosphates in Colombia are contained within the Upper Cretaceous marine sedimentary successions (Cathcart and Zambrano, 1967; Mojica, 1987; Zambrano and Mojica, 1990). In the western region of the Neiva subbasin, which lies within the Upper Magdalena Valley (UMV), these layers are restricted to the Santonian-Maastrichtian interval, which is represented by the Lidita Inferior, Lidita Superior and Yaguará formations. The phosphates are laterally discontinuous and exhibit variations in the facies over short distances. The facies analysis and the stratigraphic correlations allowed us to infer that the facies in these units represent a very shallow marine environment that occurred at the transition between the offshore zones and the upper shoreface and included the lagoonal conditions identified within the Aico Formation. It is possible that paleotopographic variability and differential subsidence affected the lateral continuity and thickness of the Santonian-Maastrichtian lithostratigraphic units. Furthermore, subsequent tectonic events may have modified the spatial distribution of the phosphate deposits. The La Plata (Chusma) fault divides the study area into two structural domains. One is located in the west, in the hanging wall, where the oldest rocks of the pre-Cretaceous basement crop out, and the other domain is located in the east, within the footwall. This footwall is where the outcrops of the Cretaceous-Quaternary sedimentary sequences characteristic of the Neiva subbasin are found. In the footwall there are important folds, such as the Media Luna syncline and the San Francisco anticline to the north, the La Guagua anticline in the central area, and the La Hocha anticline and the El Vegón syncline to the south. Some of these folds are truncated by regional reverse faults with a dextral-strike component, such as the La Plata (Chusma), San Francisco and Betania faults.
References
Bayona, G., García, D., & Mora, G. (1994). La Formación Saldaña: producto de la actividad de estratovolcanes continentales en un dominio retro-arco. In F. Etayo Serna (dir.), Estudios geológicos del Valle Superior del Magdalena. Universidad Nacional de Colombia. W. Taller Editorial Ltda.
Bayona, G. (2018). El inicio de la emergencia en los Andes del norte: una perspectiva a partir del registro tectónico-sedimentológico del Coniaciano al Paleoceno. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 42(165), 364-378. http://dx.doi.org/10.18257/raccefyn.632
Beltrán, N., & Gallo, J. (1968). The geology of Neiva Sub-Basin Upper Magdalena Basin, southern portion. Ninth Annual Field Conference. Colombian Society of Petroleum Geologists and Geophysicists.
Brenner, R. L., & Davis, K. D. (1973). Storm-generated coquinoid sandstone: Genesis of high-energy marine sediments from the Upper Jurassic of Wyoming and Montana. GSA Bulletin, 84(5), 1685-1698. https://doi.org/10.1130/0016-7606(1973)84<1685:SCSGOH>2.0.CO;2
Bürgl, H., & Botero, D. (1967). Las capas fosfáticas de la cordillera Oriental. Boletín Geológico, 15(1-3), 7-44. https://doi.org/10.32685/0120-1425/bolgeol15.1-3.1967.88
Bustamante, C., Archanjo, C. J., Cardona, A., & Vervoort, J. D. (2016). Late Jurassic to Early Cretaceous plutonism in the Colombian Andes: A record of long-term arc maturity. GSA Bulletin, 128(11-12), 1762-1779. https://doi.org/10.1130/B31307.1
Butler, K., & Schamel, S. (1988). Structure along the eastern margin of the Central Cordillera, Upper Magdalena Valley, Colombia. Journal of South American Earth Sciences, 1(1), 109-120. https://doi.org/10.1016/0895-9811(88)90019-3
Cáceres, C., Cediel, F., & Etayo, F. (2003). Mapas de distribución de facies sedimentarias y armazón tectónico de Colombia a través del Proterozoico y del Fanerozoico. Ingeominas.
Campbell, C. (1967). Lamina, laminaset, bed and bedset. Sedimentology, 8(1), 7-26. https://doi.org/10.1111/j.1365-3091.1967.tb01301.x
Compton, R. (1985). Geology in the field. ohn Wiley & Sons, Inc.
Conpes 3577 (2009). Política nacional para la racionalización del componente de costos de producción asociado a los fertilizantes en el sector agropecuario. Departamento Nacional de Planeación.
Conpes 3577 (2009). Política nacional para la racionalización del componente de costos de producción asociado a los fertilizantes en el sector agropecuario. Departamento Nacional de Planeación.
Cathcart, J., & Zambrano, F. (1967). Roca fosfática en Colombia, con una sección sobre fosfatos de Turmequé, Boyacá. Boletín Geológico, 15(1-3), 65-162. https://doi.org/10.32685/0120-1425/bolgeol15.1-3.1967.210
Cook, P., & Shergold, J. (1986). Proterozoic and Cambrian phosphorites: An introduction. In Phosphate deposits of the World, vol. 1: Proterozoic and Cambrian phosphorites. Cambridge University Press.
Dunham, R. (1962). Classification of carbonate rocks according to depositional texture. In W. E. Ham (ed.), Classification of Carbonate Rocks, a Symposium (pp. 108-121). American Association of Petroleum Geologists. https://doi.org/10.1306/M1357
Etayo, F. (1994). A modo de historia geológica del Cretácico en el valle superior del Magdalena. In F. Etayo Serna (dir.), Estudios geológicos del Valle Superior del Magdalena. Universidad Nacional de Colombia.
Evoy, R. W., & Moslow, T. F. (1995). Lithofacies associations and depositional environments in the Middle Triassic Doig Formation, Buick Creek Field, northeastern British Columbia. Bulletin of Canadian Petroleum Geology, 43(4), 461-475. https://doi.org/10.35767/gscpgbull.43.4.461
Flemings, P. B., & Jordan, T. E. (1990). Stratigraphic modeling of foreland basins: Interpreting thrust deformation and lithospheric rheology. Geology, 18(5), 430-435. https://doi.org/10.1130/0091-7613(1990)018<0430:SMOFBI>2.3.CO;2
Flórez, M., & Carrillo, G. (1994). Estratigrafía de la sucesión litológica basal del Cretácico del valle superior del Magdalena. In F. Etayo Serna (dir.), Estudios geológicos del valle superior del Magdalena. Universidad Nacional de Colombia.
Flügel, E., & Munnecke, A. (2010). Microfacies of carbonate rocks: Analysis, interpretation and application. Springer.
Folk, R. (1951). Stages of textural maturity in sedimentary rocks. Journal of Sedimentary Research, 21(3), 127-130. https://doi.org/10.2110/jsr.21.127
Folk, R. (1954). The distinction between grain size and mineral composition in sedimentary-rock nomenclature. The Journal of Geology, 62(4), 344-359. https://doi.org/10.1086/626171
Folk, R. (1959). Practical petrographic classification of limestones. The American Association of Petroleum Geologists Bulletin, 43(1), 1-38. https://doi.org/10.1306/0BDA5C36-16BD-11D7-8645000102C1865D
Folk, R. (1962). Spectral subdivision of limestone types. In W. E. Ham (ed.), Classification of Carbonate Rocks, a Symposium (pp. 62-84). American Association of Petroleum Geologists. https://doi.org/10.1306/M1357
Folk, R., & Siedlecka, A. (1974). The “schizohaline” environment: its sedimentary and diagenetic fabrics as exemplified by Late Paleozoic rocks of Bear Island, Svalbard. Sedimentary Geology, 11(1), 1-15. https://doi.org/10.1016/0037-0738(74)90002-5
Folk, R. (1980). Petrology of sedimentary rocks. Hemphill Publishing Co.
Föllmi, K. B. (1990). Condensation and phosphogenesis: Example of the Helvetic mid-Cretaceous (northern Tethyan margin). Special Publications, vol. 52. Geological Society of London. https://doi.org/10.1144/GSL.SP.1990.052.01.17
Föllmi, K. B. (1996). The phosphorus cycle, phosphogenesis and marine phosphate-rich deposits. Earth-Science Review, 40(1- 2), 55-124. https://doi.org/10.1016/0012-8252(95)00049-6
Föllmi, K. B., Garrison, R. E., Ramírez, P. C., Zambrano Ortiz, F., Kennedy, W. J., & Lehner, B. L. (1992). Cyclic phosphate-rich successions in the Upper Cretaceous of Colombia. Palaeogeography, Palaeoclimatology, Palaeoecology, 93(3-4), 151-182. https://doi.org/10.1016/0031-0182(92)90095-M
Fürsich, F. (1995). Shell concentrations. Eclogae Geologicae Helvetiae, 88(3), 643-655.
Glenn, C., Föllmi, K., Riggs, S., Baturin, G., Grimm, K., Trappe, J., Abed, A., Galli-Olivier, C., Garrison, R., Ilyin, A., Jehl, C., Rohrlich, V., Rushdi, Sadaqah, R., Schidlowski, M., Sheldon, R., & Siegmund, H. (1994). Phosphorus and phosphorites: Sedimentology and environments of formation. Eclogae Geologicae Helvetiae, 87(3), 747-788.
Grimm, K. A. (1997). Phosphorites feed people. Farm Folk/City Folk’s Newsletter, (13), 4-5.
Grimm, K. A. (2000). Stratigraphic condensation and the redeposition of economic phosphorite: Allostratigraphy of Oligo-Miocene shelfal sediments, Baja California Sur, Mexico. In C. R. Glenn, L. Prévôt-Lucas & J. Lucas (eds.), Marine Authigenesis: From Global to Microbial. Society for Sedimentary Geology. https://doi.org/10.2110/pec.00.66.0325
Guerrero, J., Sarmiento, G., & Navarrete, R. (2000). The stratigraphy of the W. side of the Cretaceous Colombian Basin in the Upper Magdalena Valley: Reevaluation of selected areas and type localities including Aipe, Guaduas, Ortega, and Piedras. Geología Colombiana, 25, 45-110.
Hampson, G., & Storms, J. E. (2003). Geomorphological and sequence stratigraphic variability in wave-dominated, shoreface-shelf parasequences. Sedimentology, 50(4), 667- 701. https://doi.org/10.1046/j.1365-3091.2003.00570.x
Hernández, J., & Urueña, C. (2017). Aspectos geocronológicos y petrogenéticos del Complejo Aleluya: implicaciones en la exploración de Mg en el norte del departamento del Huila, Colombia. Memorias XVI Congreso Colombiano de Geología, Santa Marta, August 28 to September 1, 2017.
Horton, B. K., Saylor, J. E., Nie, J., Mora, A., Parra, M., Reyes-Harker, A., & Stockli, D. F. (2010). Linking sedimentation in the northern Andes to basement configuration, Mesozoic extension, and Cenozoic shortening: Evidence from detrital zircon U-Pb ages, Eastern Cordillera, Colombia. GSA Bulletin, 122(9-10), 1423-1442. https://doi.org/10.1130/B30118.1
Howe, R. (1997). Geologic contacts. Journal of Geoscience Education, 45(2), 133-136. https://doi.org/10.5408/1089-9995-45.2.133
Ingram, R. (1954). Terminology for the thickness of stratification and parting units in sedimentary rocks. GSA Bulletin, 65(9), 937-938. https://doi.org/10.1130/0016-7606(1954)65[937:TFTTOS]2.0.CO;2
Jiménez, G., Rico, J., Bayona, G., Montes, C., Rosero, A., & Sierra, D. (2012). Analysis of curved folds and fault/fold terminations in the southern Upper Magdalena Valley of Colombia. Journal of South American Earth Sciences, 39, 184-201. https://doi.org/10.1016/j.jsames.2012.04.006
Jordan, T. E. (1995). Retroarc Foreland and related basins. In C. J. Busby & R. V. Ingersoll (eds.), Tectonics of sedimentary basins (pp. 331-362). Blackwell Science.
Julivert, M. (1970). Cover and basement tectonics in the Cordillera Oriental of Colombia, South America, and a comparison with some other folded chains. GSA Bulletin, 81(12), 3623- 3646. https://doi.org/10.1130/0016-7606(1970)81[3623:CABTIT]2.0.CO;2
Kamola, D., & Van Wagoner, J. (1995). Stratigraphy and facies architecture of parasequences with examples form the Spring Canyon Member, Blackhawk Formation, Utah. In Sequence Stratigraphy of Foreland Basin Deposits: Outcrop and Subsurface Examples from the Cretaceous of North America, AAPG Memories vol. 64. American Association of Petroleum Geologists. https://doi.org/10.1306/M64594C3
Kammer, A., Piraquive, A., Gómez, C., Mora, A., & Velásquez, A. (2020). Structural styles of the Eastern Cordillera of Colombia. In The geology of Colombia, vol. 3. Servicio Geológico Colombiano. https://doi.org/10.32685/pub.esp.37.2019.06
Krumbein, W., & Sloss, L. (1969). Estratigrafía y sedimentación. Uteha.
Mendivelso, D. (1982). Aspectos fotogeológicos y estratigráficos del Cretáceo en la región de Itaibe (valle superior del Magdalena) (Bachelor thesis). Universidad Nacional de Colombia.
Mendivelso, D. (1993). Aspectos fotogeológicos y estratigráficos del Cretáceo por la quebrada Itaibe, valle superior del río Magdalena, Colombia. Revista Cipres, 14(1), 67-84.
Miall, A. D. (1984). Variations in fluvial style in the lower Cenozoic synorogenic sediments of the Canadian Arctic Islands. Sedimentary Geology, 38(1-4), 499-523. https://doi.org/10.1016/0037-0738(84)90091-5
Mojica, P. (1987). Fosfatos. In Recursos minerales de Colombia (t. II, pp. 856-893). Ingeominas.
Mojica, J., & Franco, R. (1990). Estructura y evolución tectónica del valle medio y superior del Magdalena, Colombia. Geología Colombiana, 17, 41-64.
Moore, D., & Scruton, P. (1957). Minor internal structures of some recent unconsolidated sediments. American Association of Petroleum Geologists Bulletin, 41(12), 2723-2751. https://doi.org/10.1306/0bda59db-16bd-11d7-8645000102c1865d
Mora, A. (2003). Modelo estratigráfico para el Cretácico Basal (Aptiano-Albiano) en el norte de la subcuenca de Neiva, valle superior del Magdalena, Colombia. 8.º Simposio Bolivariano, Exploración Petrolera en las Cuencas Subandinas. European Association of Geoscientists and Engineers.
Morales, C., Caicedo, J., Velandia, F., & Núñez, T. (2001). Geología de la plancha 345, Campoalegre: Memoria explicativa. Ingeominas.
Nichols, G. (1999). Sedimentology and Stratigraphy. Blackwell Science.
Notholt, A. J. G. (1985). Phosphorite resources in the Mediterranean (Tethyan) phosphogenic province: A progress report. Sciences Géologiques, Bulletins et Mémoires, 77(1), 9-17.
Powers, M. (1953). A new roundness scale for sedimentary particles. Journal of Sedimentary Research, 23(2), 117-119. https://doi.org/10.1306/0bda59db-16bd-11d7-8645000102c1865d
Ptáček, P. (2016). Phosphate rocks. En Apatites and their synthetic analogues: Synthesis, structure, properties and applications. IntechOpen. https://doi.org/10.5772/59882
Pufahl, P. K., Grimm, K. A., Abed, A. M., & Sadaqah, R. M. (2003). Upper Cretaceous (Campanian) phosphorites in Jordan: Implications for the formation of a south Tethyan phosphorite giant. Sedimentary Geology, 161(3-4), 175- 205. https://doi.org/10.1016/S0037-0738(03)00070-8
Reineck, H., & Singh, I. (1980). Depositional sedimentary environments (with reference to terrigenous clastics) (2.ª ed.). Springer-Verlag.
Reineck, H., & Wunderlich, F. (1968). Classification and origin of flaser and lenticular bedding. Sedimentology, 11(1-2), 99- 104. https://doi.org/10.1111/j.1365-3091.1968.tb00843.x
Rodríguez, G., Arango, M. I., Zapata, G., & Bermúdez, J. G. (2018). Petrotectonic characteristics, geochemistry, and U-Pb geochronology of Jurassic plutons in the Upper Magdalena Valley-Colombia: Implications on the evolution of magmatic arcs in the NW Andes. Journal of South American Earth Sciences, 81, 10-30. https://doi.org/10.1016/j.jsames.2017.10.012
Roncancio, J., & Martínez, M. (2010). Upper Magdalena Basin. In F. Cediel & F. Colmenares (eds.), Petroleum geology of Colombia, vol. 14. Agencia Nacional de Hidrocarburos.
Salazar, A. (1992). Depositional and paleotectonic settings of the Cretaceous sequence, Upper Magdalena Valley, Colombia S. A. (Ph. D. thesis). University of South Carolina.
Sarmiento Rojas L. F. (2019). Cretaceous stratigraphy and paleo-facies maps of Northwestern South America. In F. Cediel & R. P. Shaw (eds.), Geology and tectonics of Northwestern South America. Frontiers in Earth Sciences. Springer. https://doi.org/10.1007/978-3-319-76132-9_10
Servicio Geológico Colombiano, & Universidad Nacional de Colombia. (2018). Convenio Especial de Cooperación n.º 13 de 2017. Potencial de fosfatos en un sector del valle superior del Magdalena mediante el estudio estratigráfico de las rocas cretácicas, haciendo énfasis en el Cretáceo superior.
Soudry, D., Glenn, C. R., Nathan, Y., Segal, I., & VonderHaar, D. (2006). Evolution of Tethyan phosphogenesis along the Northern edges of the Arabian-African shield during the Cretaceous-Eocene as deduced from temporal variations of Ca and Nd isotopes and rates of P accumulation. Earth-Science Reviews, 78(1-2), 27-57. https://doi.org/10.1016/j.earscirev.2006.03.005
Swanson, R. (1981). Sample examination manual. AAPG Methods in Exploration Series, vol. 1. The American Association of Petroleum Geologists. https://doi.org/10.1306/Mth1413
Terraza, R. (2019). “Formación La Luna”: expresión espuria en la geología colombiana. In F. Etayo-Serna (dir.), Estudios geológicos y paleontológicos sobre el Cretácico en la región del embalse del río Sogamoso, Valle Medio del Magdalena. Compilación de los Estudios Geológicos Oficiales en Colombia, vol. XXIII. Servicio Geológico Colombiano. https://doi.org/10.32685/9789585231788-5
Terraza, R., Martin, C., Martínez, G., & Rojas, N. (2016). Exploración geológica de fosfatos en el Bloque Boyacá, planchas 191 y 210. Informe técnico. Servicio Geológico Colombiano.
Terraza, R., Martin, C., Martínez, G., Rojas, S., & Rojas, N. (2019). Exploración geológica de fosfatos en el departamento del Huila, costado occidental del río Magdalena. Planchas 302, 323, 344, 345 y 366. Informe técnico. Servicio Geológico Colombiano.
Terraza Melo, R., Martin Rincón, C. L., Martínez Aparicio, G. A., Rojas Jiménez, S. T., Rojas Parra, N. R., & Hernández González, J. S. (2019). Litoestratigrafía estandarizada para el valle superior del Magdalena, subcuenca de Neiva, costado W del río Magdalena. Publicaciones Especiales del Servicio Geológico Colombiano.
The Geological Society of America. (1995). Rock-color chart. Prepared by The Rock-Color Chart Committee, 8th printing.
United States Geological Survey-USGS. (2022). Mineral commodity summaries 2022. U.S. Geological Survey, 202 p. https://doi.org/10.3133/mcs2022
Van Wagoner, J., Mitchum, R., Campion, K., & Rahmanian, V. (1990). Siliciclastic sequence stratigraphy in well logs, cores and outcrops: Concepts for high-resolution correlation of time and fades. AAPG Methods in Exploration Series, (7), 55.
Veloza, G, Mora, A., De Freitas, M., & Mantilla, M. (2008). Dislocación de facies en el tope de la secuencia cretácica de la subcuenca de Neiva, valle superior del Magdalena, y sus implicaciones en el modelo estratigráfico secuencial colombiano. Boletín de Geología, 30(1), 29-44.
Vergara, L. (1997). Stratigraphy, foraminiferal assemblages and paleoenvironments in the late Cretaceous of the Upper Magdalena Valley, Colombia (part I). Journal of South American Earth Sciences, 10(2), 111-132. https://doi.org/10.1016/S0895-9811(97)00010-2
Villamil, T. (1998). Chronology, relative sea-level history and a new sequence stratigraphic model for basinal Cretaceous facies of Colombia. In L. James & C. D. Pindell (eds.), Paleogeographic Evolution and Non-Glacial Eustacy, Northern South America (pp. 161-216). Special publication vol. 58. SEPM Society for Sedimentary Geology.
Villamizar, N., Bernet, M., Urueña, C., Hernández, J. S., Terraza, R., Roncancio, J., & Piraquive, A. (2021). Thermal history of the Southern Central Cordillera and its exhumation record in the Cenozoic deposits of the Upper Magdalena Valley, Colombia. Journal of South American Earth Sciences, 107, 103-105. https://doi.org/10.1016/j.jsames.2020.103105
Walker, R. G., & Plint, A. G. (1992). Wave and storm dominated shallow marine systems. In R. G. Walker & N. P. James (eds.), Facies models: Response to sea-level change (pp. 219- 238). Geological Association of Canada.
Wilkins, A. D. (2011). Terminology and the classification of fine-grained sedimentary rocks: Is there a difference between a claystone, a mudstone and a shale? University of Aberdeen.
illiams, H., Turner, F., & Gilbert, C. (1954). Petrography: An introduction to the study of rocks in thin sections. W. H. Freeman & Company, Inc.
Zapata, S., Cardona, A., Jaramillo, J. S., Patiño, A., Valencia, V., León, S., Mejía, D., Pardo-Trujillo, A., & Castañeda, J. (2019). Cretaceous extensional and compressional tectonics in the Northwestern Andes, prior to the collision with the Caribbean oceanic plateau. Gondwana Research, 66, 207-226. https://doi.org/10.1016/j.gr.2018.10.008
Zambrano, F., & Mojica, P. (1990). Characteristics of Colombian phosphate deposits. In G. E. Ericksen, M. T. Cañas Pinochet & J. A. Reinemund (eds.), Geology of the Andes and its relation to hydrocarbon and mineral resources. Circum-Pacific Council for Energy and Mineral Resources Earth Science Series, v. 11.
Zelazny, I. V., Gegolick, A., Zonneveld, J. P., Playter, T., & Moslow, T. F. (2018). Sedimentology, stratigraphy and geochemistry of Sulphur Mountain (Montney equivalent) Formation outcrop in south central Rocky Mountains, Alberta, Canada. Bulletin of Canadian Petroleum Geology, 66(1), 288-317.