Tracing Neotropical springs in crystalline rocks: Hydrogeochemical and statistical insights

Authors

DOI:

https://doi.org/10.32685/0120-1425/bol.geol.52.2.2025.759

Keywords:

Vadose water, hydrometeorological interactions, tropical hydrogeology, hydrogeochemical characterization, multivariate analysis, mountain aquifer systems, groundwater
Spatial Distribution of EC Sampling Points for 2020–2021 and C1-HQ

Downloads

How to Cite

Chavarría, L., & Jaramillo, M. (2025). Tracing Neotropical springs in crystalline rocks: Hydrogeochemical and statistical insights. Boletín Geológico, 52(2). https://doi.org/10.32685/0120-1425/bol.geol.52.2.2025.759

Issue

Section

Articles

Published

2025-12-12

Abstract

Historically, spring's hydrogeological, ecosystemic, and cultural importance has been recognized for protecting groundwater and surface water resources. However, in Colombia, studies on spring water are minimal, and there is no established methodology for their correct classification, especially in tropical zones, where the hydrogeological systems are highly complex due to abrupt topography, high precipitation, and the development of thick soils.

The primary objective of this study was to elucidate the interactions of rainwater and hydrochemical processes as it infiltrates, flows, and interacts with the underground medium in a mountainous area of the municipality of San Roque, Department of Antioquia, to determine whether the emerging water on the surface is groundwater or vadose water. For this purpose, hydrogeochemical analyses and multivariate clustering were conducted within the context of the area's hydrogeological knowledge, using on-site physicochemical and water quality data from various water types.

The results show that not all sampling points in the study zone can be classified as spring water; some exhibit a direct relationship with rainwater, without necessarily discharging from the saturated zone. Our results provide a preliminary assessment of the research and classification of spring waters in Colombia, which is crucial for refining current guidelines on the declaration of protected zones and on soil utilization associated with the groundwater resources.

References

Appelo, C.A.J.; Postma, D. (2005). Geochemistry, groundwater and pollution. 2nd ed. CRC Press. https://doi.org/10.1201/9781439833544

Champ, D.R; J. Gulens, J; Jackson R. E. . 1979. Oxidation–reduction sequences in ground water flow systems. Canadian Journal of Earth Sciences. 16(1): 12-23. https://doi.org/10.1139/e79-002

Chen, T.; Zhang, H.; Sun, C.; Li, H.; Gao, Y. (2018). Multivariate statistical approaches to identify the major factors governing groundwater quality. Applied Water Science, 8(7), 1–6. https://doi.org/10.1007/s13201-018-0837-0

Cloutier, V.; Lefebvre, R.; Therrien, R.; Savard, M.M. (2008). Multi-variate statistical analysis of geochemical data as indicative of the hydrogeochemical evolution of groundwater in a sedimentary rock aquifer system. Journal of Hydrology, 353(3–4), 294–313. https://doi.org/10.1016/j.jhydrol.2008.02.015

Custodio, E.; Llamas, M. (1975). Hidrología subterránea. Barcelona: Editorial Omega, vol. 2.

Davis, J. (1986). Statistics and data analysis in Geology. New York: John Wiley and Sons, Inc.

De la Fuente, S. (2011). Análisis de correspondencias simples y múlti-ples. Facultad de Ciencias Económicas y Empresariales Universidad Autónoma de Madrid. https://www.fuenterrebollo.com/Economicas/ECONOMETRIA/REDUCIR-DIMENSION/CORRESPONDENCIAS/correspondencias.pdf

Doménico, P., & Schawartz, F. (1997). Physical and Chemical Hydro-geology. New York, USA.: John Wiley E Sons, Inc.

Elango, L.; Kannan, R. (2007). Chapter 11 Rock-water interaction and its control on chemical composition of groundwater. Developments in Environmental Science, 5(07), 229–243. https://doi.org/10.1016/S1474-8177(07)05011-5

Freeze, R.; Cherry, J. (1979). Groundwater. N.J: Prentice-Hall.

Gibbs, R. (1970). Mechanisms controlling world water chemistry. Science, New Series, Vol. 170, (3962), 1088-1090. https://doi.org/10.1126/science.170.3962.1088

Golder Associates (2014). Evaluación hidrogeológica. Documento soporte para la EIA. Medellín.Colombia

Güler, C.; Thyne, G.; McCray, J.; Turner, A. (2002). Evaluation of graphical and multivariate statistical methods for classification of water chemistry data. Hydrogeology Journal, 10(4), 455–474. https://doi.org/10.1007/s10040-002-0196-6

Güler, C.; Thyne, G.D. (2004). Hydrologic and geologic factors con-trolling surface and groundwater chemistry in Indian Wells-Owens Valley area, southeastern California, USA. Journal of Hydrology, 285(1–4), 177–198. https://doi.org/10.1016/j.jhydrol.2003.08.019

Hounslow, A. (1995). Water quality data: analysis and interpretation. Boca Raton. CRC Press LLC, Lewis Publishers

ICONTEC (2014). Guía técnica colombiana GTC-ISO 30. Bogotá: Instituto Colombiano de Normas Técnicas y Certificación (ICON-TEC)

Integral S.A. (2015). Estudio de impacto Ambiental proyecto de minería de oro a cielo abierto Gramalote. Medellín. Colombia.

Instituto de Hidrología, Meteorología y Estudios Ambientales – IDEAM (2021). Consulta y descarga de datos hidrometeorológicos. Disponible en http://dhime.ideam.gov.co/atencionciudadano/. Re-covered 05-11-2022.

Jalali, M. (2006). Chemical characteristics of groundwater in parts of mountainous region, Alvand, Hamadan, Iran. Environmental Geol-ogy, 51(3), 433–446. https://doi.org/10.1007/s00254-006-0338-6

Jalali, M. (2007). Assessment of the chemical components of Famenin groundwater, western Iran. Environmental Geochemistry and Health, 29(5),357–374. https://doi.org/10.1007/s10653-006-9080-y

Jalali, M. (2016). Geochemistry and background concentration of major ions in spring waters in a high-mountain area of the Hamedan (Iran). Journal of Geochemical Exploration. 165, 49–61. https://doi.org/10.1016/j.gexplo.2016.02.002

Kumar, S.K.; Rammohan, V.; Sahayam, J.D.; Jeevanandam, M. (2009). Assessment of groundwater quality and hydrogeochemistry of Manimuktha River basin, Tamil Nadu, India. Environmental Moni-toring and Assessment, 159(1–4), 341–351. https://doi.org/10.1007/s10661-008-0633-7

Lakshmanan, E.; Kannan, R.; Senthil Kumar, M. (2003). Major ion chemistry and identification of hydrogeochemical processes of ground water in a part of Kancheepuram district, Tamil Nadu, India. Environmental Geosciences, 10(4), 157–166. https://doi.org/10.1306/eg.0820303011

Lourenço, C.; Ribeiro, L; Cruz, J. (2010). Classification of natural mineral and spring bottled waters of Portugal using Principal Com-ponent Analysis. Journal of Geochemical Exploration, 107, 362–372. https://doi.org/10.1016/j.gexplo.2010.08.001

Malagón, J.P.; Piña, A.; Argüello, S; Donado, L.D. (2021). Análisis hidrogeoquímico multivariado del agua subterránea del sistema acuí-fero del Valle Medio del Magdalena, Colombia: Estudio a escala re-gional. Boletín de la Sociedad Geológica Mexicana, 73(3), A070421. http://dx.doi.org/10.18268/BSGM2021v73n3a070421

Marín, J.M. (2021). Estadística descriptiva y análisis de datos.Tema 4: Transformaciones de variables. Available in: http://halweb.uc3m.es/esp/Personal/personas/jmmarin/esp/EDescrip/tema4.pdf. Recovered: 06-05-2021

Marandi, A.; Shand, P. (2018). Groundwater chemistry and the Gibbs diagram. Applied Geochemistry, 97, 209–212. https://doi.org/10.1016/j.apgeochem.2018.07.009

Mazor, E. (2003). Chemical and isotopic groundwater hydrology. 3rd edition. CRC Press

Minitab Inc. State (2021). Minitab Release 14®. (C. Pensilvania, Ed.) EE. UU.

Mostaza-Colado, D.; Carreño-Conde, F.; Rasines-Ladero, R.; Iepure, S. (2018). Hydrogeochemical characterization of a shallow alluvial aq-uifer: 1 baseline for groundwater quality assessment and resource management. Science of the Total Environment, 639, 1110–1125. https://doi.org/10.1016/j.scitotenv.2018.05.236

Pazand, K., Javanshir, A.R. (2016). Application of multivariate statisti-cal techniques in hydrogeochemical evolution of groundwater in an igneous rock and sedimentary aquifer system: a case study of the southern Bam, SE Iran. Carbonates and Evaporites, 31(1), 9–16. https://doi.org/10.1007/s13146-015-0234-9

Piper, A.M. (1944). A graphic procedure in the geochemical interpreta-tion of water-analyses. Eos, Transactions American Geophysical Union, 25(6), 914-928. https://doi.org/10.1029/TR025i006p00914

Ragno, G.; De Luca, M.; Ioele, G. (2007). An application of cluster analysis and multivariate classification methods to spring water monitoring data. Microchemical Journal, 87(2), 119–127. https://doi.org/10.1016/j.microc.2007.06.003

Rabajczyk, A.; Namieśnik, J. (2014). Speciation of Iron in the Aquatic Environment. Water Environment Research, 86(8), 741–758. http://www.jstor.org/stable/24585466

Ravikumar, P.; Somashekar, R.K. (2017). Principal component analysis and hydrochemical facies characterization to evaluate groundwater quality in Varahi river basin, Karnataka state, India. Applied Water Science, 7, 745–755. https://doi.org/10.1007/s13201-015-0287-x

Rodier, J. (1981). Análisis de las aguas. Barcelona: Omega.

Redlands, C. E. S. R. I. (2011). ESRI 2011. ArcGIS Desktop: Release 10

Singh, K.P.; Malik, A.; Mohan, D.; Sinha, S. (2004). Multivariate statistical techniques for the evaluation of spatial and temporal varia-tions in water quality of Gomti River (India) - A case study. Water Research, 38(18), 3980–3992. https://doi.org/10.1016/j.watres.2004.06.011

Simler, R. (2021). Logiciel d'hydrochimie- Water Software Quality Hydrochemistry diagrams, DIAGRAMMES: http://www.lha.univ-avignon.fr/LHA-Logiciels.htm. Recovered 14-11-2021

Springer, A.; Stevens., L. (2008). Spheres of discharge of springs. Hydrogeology Journal, 17, 11. https://doi.org/10.1007/s10040-008-0341-y

Stevens, L.; Ledbetter, J.; Springer, A. (2012). Springs inventory and assessment training manual, Version 2.01. Springs Stewardship In-stitute, Museum of Northern Arizona, Flagstaff. Obtenido de http://springstewardship.org/workshops.html Recovered 18-11-2021

Swan, A.; Sandilands, M. (1995). Introduction to geological data analy-sis. Oxford: Blackwell Science: Blackwell Science.

Tesoriero, A. J.; Wherry, S. A.; Dupuy, D. I.; Johnson, T. D. (2024). Predicting Redox Conditions in Groundwater at a National Scale Using Random Forest Classification. Environmental Science & Technology,58(11),5079-5092. https://doi.org/10.1021/acs.est.3c07576pubs.acs.org+2pubmed.ncbi.nlm.nih.gov+2

Toro, M.T. (2020). Groundwater resources of the western Andean front: insights from the Aconcagua basin, central Chile. Tesis para optar al grado de doctor en ciencias mención geología. Santiago de Chile: Universidad de Chile. https://repositorio.uchile.cl/bitstream/handle/2250/176630/Groundwater-resources-of-the-Western-Andean-Front-insights-from-the-Aconcagua-Basin.pdf?sequence=1&isAllowed=y

Zhang, B.; Zhao, D.; Zhou, P.; Qu, S.; Liao, F.; Guangcai, W. (2020). Hydrochemical characteristics of groundwater and dominant water – rock interactions in the Delingha Area, Qaidam Basin, Northwest-ern China. Water, 12(836), 1–16. https://doi.org/10.3390/w12030836.

Von der Heyden, B. P.; Roychoudhury, A. N. (2015). Application, chemical interaction and fate of iron minerals in polluted sediment and soils. Current Pollution Reports, 1, 265–279. https://doi.org/10.1007/40726-015-0020-2

Downloads

Download data is not yet available.

Similar Articles

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 > >> 

You may also start an advanced similarity search for this article.