Geochemical and petrogenetic considerations in order to explain magmatic the evolution of the Nevado del Huila Volcano Complex

Authors

  • Ana María Correa Tamayo Servicio Geológico Colombiano
  • Eumenio Ancochea Soto Universidad Complutense de Madrid (España)

DOI:

https://doi.org/10.32685/0120-1425/boletingeo.43.2015.29

Keywords:

Nevado del Huila volcano complex, andesite, dacite, adakite, mantle melts, fraccional crystallization

How to Cite

Correa Tamayo, A. M., & Ancochea Soto, E. (2015). Geochemical and petrogenetic considerations in order to explain magmatic the evolution of the Nevado del Huila Volcano Complex. Boletín Geológico, (43), 53–62. https://doi.org/10.32685/0120-1425/boletingeo.43.2015.29

Issue

Section

Articles

Published

2015-01-01

Abstract

The Nevado del Huila Volcano Complex is made of rocks that have intermediate to acid composition, calc-alkaline affinity and middle content in K2O. According to SiO2 content, there are three geochemical types: andesites ss, dacitic andesites and dacites. Adakitic tendence in more recent lavas and more dacitic composition. Behaviors of mayor elements, REE, LFSE and HFSE are typical of orogenic andesites of active continental margin. Isotopic composition Sr-Nd resemble to volcanoes of ZVN Andes (Ecuador’s volcanoes, Galeras and Nevado del Ruiz volcanoes from Colombia). Homogeneous isotopic rate Sr-Nd (87Sr/86Sr = 0,7041-0,7042 and 143Nd/144Nd = 0,51279-0,51283) are typical of mantle melts, with limited taking part of derived components of subduced slab or continental crust. Compatible and incompatible trace elements indicate that fractional crystallization is petrogenetic process that has controlled magmatic evolution. Besides to reject others mechanisms: crustal contamination and magmas mixing. These rocks have probably been generated from partial melting of enriched mantle wedge by components of subduced slab. Later fractional crystallization drove magmatic differentiation of this volcano complex.

References

Alvarado, G., Acevedo, A., Monsalve, M., Espíndola, J., Gómez, D., Naranjo, J., Pulgarín, B., Raigosa, J., Sigarán, C. & Vanderlaat, R. (1999). Desarrollo de la vulcanología en Latinoamérica en el último cuarto del siglo XX. Revista Geofísica, 51, 186-241.

Bailey, J. (1981). Geochemical criteria for a refined tectonic discrimination of orogenic andesites. Chemical Geology, 32, 139-154.

Bourdon, E., Eissen, J. P., Monzier, M., Robin, C., Martin, H., Cotton, J. & Hall, M. (2002). Adakite-like lavas from Antisana volcano (Ecuador): Evidence for slab melt metasomatism beneath the Andean Northern Volcanic Zone. Journal of Petrology, 43(2), 199-217.

Bryant, J., Yogodzinski, G., Hall, M., Lewicki, J. & Bayley, D. (2006). Geochemical constraints on the origin of volcanic rocks from the Andean Northern Volcanic Zone, Ecuador. Journal of Petrology, 47(6), 1147-1175.

Cepeda, H., Méndez, R., Murcia, A. & Vergara, H. (1986). Mapa preliminar de riesgos volcánicos potenciales del Nevado del Huila, escala 1:200.000. Informe interno 1981. Popayán: Ingeominas.

Correa, A. (2009). Estudio petrológico, geoquímico y vulcanológico para establecer la evolución magmática del Complejo Volcánico del Huila, Colombia. Tesis doctoral. Madrid: Universidad Complutense de Madrid.

Correa, A. & Cepeda, H. (1995). Informe preliminar sobre la geología del Complejo Volcánico Nevado del Huila. Informe interno. Popayán: Ingeominas.

Correa, A., Cepeda, H., Pulgarín, B. & Ancochea, E. (2000). El volcán Nevado del Huila (Colombia): rasgos generales y caracterización composicional. Revista Geogaceta, 27, 51-54.

Correa, A. & Pulgarín, B. (2002). Morfología, estratigrafía y petrografía general del Complejo Volcánico Nevado del Huila (CVNH). Énfasis en el flanco occidental. Informe interno. Popayán: Ingeominas.

Defant, M. & Drummond, M. (1990). Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347, 662-665.

Gill, J. (1982). Orogenic andesites and plate tectonics. Berlín: Springer-Verlag.

Hall, M. & Wood, C. (1985). Volcano-tectonic segmetation of the northern Andes. Geology, 13, 203-207.

James, D. & Murcia, L. (1984). Crustal contamination in northern Andean volcanics. Journal of the Geological Society London, 141, 823-830.

Kelemen, P., Hanghoj, K. & Greene, A. (2003). One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust (Chapter 3.18). En Holland, H. & Turekian, K. (Eds.), Treatise on Geochemistry, pp. 593- 569, vol. 3 The Crust. Oxford: Elsevier-Pergamon.

Ingeominas (1994). El sismo de Páez, Cauca -6 de junio de 1994-. Evaluación de emergencia. Informe presentado al Sistema Nacional para la Prevención y Atención de Desastres de Colombia (SNPAD). Santafé de Bogotá.

Le Maitre, R., Bateman, P., Dudek, A., Keller, J., Lameyre, M., Le Bas, M., Sabine, P., Scmid, R., Sorense, H., Streckeisen, A., Woolley, A. & Zanettin, B. (1989). A classification of igneous rocks and glossary of terms. Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks. Oxford: Blackwell Scientific Publications.

Marín-Cerón, M. (2007). Major, trace element and multiisotopic systematics of SW Colombian volcanic arc, northen Andes: Implication for the stability of carbonate-rich sediment ar subduction zone and the genesis of andesite magma. Ph.D. Thesis. Okayama University.

Martin, H. (1999). Adakitic magmas: Modern analogues of Archaean granitoids. Lithos, 46, 411-429.

Meissner, R., Fluh, E. & Muckelmann, R. (1980). Sobre la estructura de los Andes septentrionales. Resultados de investigaciones geofísicas. Nuevos Resultados de la Investigación Geocientífica Alemana en Latinoamérica. Bonn: Deutsche Forschungsgemein–Schaft.

Montes, N. & Sandoval, A. (1998). Base de datos de fallas activas, recopilación bibliográfica. Informe interno. Bogotá: Ingeominas.

Nakamura, N. (1984). Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous and ordinary chondrites. Geochimica et Cosmochimica Acta, 38, 757-775.

Pearce, J. (1983). Role of the sub-continental lithosphere in magma genesis at active continental margins. En C. Hawkeswort & M. Norry (Ed.). Continental basalts and mantle xenoliths, pp. 230-249.

Nantwich: Shiva Pub. Ltd. Pulgarín, B. (2000). Depósitos masivos del Pleistoceno tardío, asociados al colapso del flanco sur del volcán Nevado del Huila (Colombia). Tesis de maestría. México: Universidad Nacional Autónoma de México (UNAM).

Samaniego, P., Martin, H., Monzier, M., Robin, C., Fornari, M., Eissen, J-P. & Cotten, J. (2005). Temporal evolution of magmatism in the Northern Volcanic Zone of the Andes: The geology and petrology of Cayambe Volcanic Complex (Ecuador). Journal of Petrology, 46(11), 2225-2252.

Stübel, A. (1906). Die vulkanberge von Colombia. 154 Seiten, 3 Tafeln Karten, 53 Bildern. Dresden: Verlag von Wilhelm Baensch.

Sun, S. & McDonough, W. (1989). Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. En A. Saunders & M. Norry (Eds.). Magmatism in the Ocean Basins. Geological Society, 42, 313-345.

Downloads

Download data is not yet available.

Most read articles by the same author(s)

Similar Articles

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 > >> 

You may also start an advanced similarity search for this article.