Review of geothermochronological and thermobarometric techniques for the construction of cooling and exhumation curves or paths for intrusive igneous rocks
DOI:
https://doi.org/10.32685/0120-1425/boletingeo.47.2020.527Keywords:
cooling and exhumation curves or paths, geochronology, thermochronology, thermobarometry in igneous rocksDownloads
How to Cite
Issue
Section
Published
Abstract
The present study reviews radiometric and thermobarometric techniques used to construct cooling curves or paths to characterize intrusive bodies and to calculate cooling and exhumation rates. To construct these curves or paths, the temperature, time and depth variables must be estimated in intrusive bodies by applying various analytical techniques, including thermobarometry and U-Pb zircon, Ar-Ar hornblende and muscovite, fission track and (U-Th)/He zircon and apatite dating, in combination with a geological framework of reference for each intrusive body. The authors recommend to determine the crystallization age by zircon U-Pb dating, to quantify the emplacement depth using thermobarometry methods according to the composition of the intrusive body, to calculate the initial cooling ages with hornblende and muscovite Ar-Ar methods, as well as to calculate the cooling/exhumation ages in the upper crust using low-temperature thermochronology methods. These cooling curves or paths in intrusive bodies are highly relevant when studying compressive or extensional areas because they partly represent the thermal history of the era, thereby providing data on the magmatic and tectonic evolution of the region. Thus, these studies are highly important for designing geodynamic models and for their possible application in developing the tectonic model of the country.
References
Anderson, J. (1996). Status of thermobarometry in granitic batholiths. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 87(1-2), 125-138. https://doi.org/10.1017/S0263593300006544
Anderson, J., & Smith, D. (1995). The effects of temperature and f02 on the Al-in-hornblende barometer. American Mineralogist, 80, 549-559. https://doi.org/10.2138/am-1995-5-614
Anderson, J., Barth, A., & Young, E. (1988). Mid-crustal Cretaceous roots of Cordilleran metamorphic core complexes. Geology, 16(4), 366-369. https://doi.org/10.1130/0091-7613(1988)016<0366:MCCROC>2.3.CO;2
Anderson, J., Barth, A., Wooden, J., & Mazdab, F. (2008). Thermometers and thermobarometers in granitic systems. Reviews in Mineralogy and Geochemistry, 69(1), 121-142. https://doi.org/10.2138/rmg.2008.69.4
Armstrong, F. (2005). Thermochronometers in sedimentary basins. Reviews in Mineralogy and Geochemistry, 58, 499- 525. https://doi.org/10.2138/rmg.2005.58.19
Barbarand, J., Carter, A., Wood, I., & Hurford, T. (2003). Compositional and structural control of fission-track annealing in apatite. Chemical Geology, 198, 107-137. https://doi.org/10.1016/S0009-2541(02)00424-2
Bernet, M., Piraquive, A., Urueña, C., López Isaza, J., Bermúdez, M., Zuluaga, C., Amaya, S., & Villamizar, N. (2019). Multidisciplinary petro-geo-thermochronological approach to ore deposit exploration. Ore Geology Reviews, 112, 1-17. https://doi.org/10.1016/j.oregeorev.2019.103017
Bernet, M., Van der Beek, P., Pik, R., Huyghe, P., Mugnier, J. L., Labrin, E., & Szulc, A. (2006). Miocene to recent exhumation of the central Himalaya determined fromcombined detrital zircon fission-track and U/Pb analysis of Siwalik sediments, Western Nepal. Basin Research, 18(4), 393-412. https://doi.org/10.1111/j.1365-2117.2006.00303.x
Blundy, J., & Holland, T. (1990). Calcic amphibole equilibria and a new amphibole-plagioclase geothermometer. Contributions to Mineralogy and Petrology, 104, 208-224. https://doi.org/10.1007/BF00306444
Boven, A., Pasteels, P., Kelley, S., Punzalan, L., Bingen, B., & Demaiffe, D. (2001). 40Ar/39Ar study of plagioclases from the Rogaland anorthosite complex (SW Norway); an attempt to understand argon ages in plutonic plagioclase. Chemical Geology, 176(1-4), 105-135. https://doi.org/10.1016/S0009-2541(00)00372-7
Brandon, M., Roden Tice, M., & Garver, J. (1998). Late Cenozoic exhumation of the Cascadia accretionary wedge in the Olympic Mountains, Northwest Washington State. GSA Bulletin, 110(8), 985-1009. https://doi.org/10.1130/0016-7606(1998)110<0985:LCEOTC>2.3.CO;2
Braun, J., Van Der Beek, P., Valla, P., Robert, X., Herman, F., Glotzbach, C., Pedersen, V., Perry, C., Simon-Labric, T., & Prigent, C. (2012). Quantifying rates of landscape evolution and tectonic processes by thermochronology and numerical modeling of crustal heat transport using Pecube. Tectonophysics, 524, 1-28. https://doi.org/10.1016/j.tecto.2011.12.035
Buddington, A. (1959). Granite emplacement with special reference to North America. Bulletin of The Geological Society of America, 70, 571-747. https://doi.org/10.1130/0016-7606(1959)70[671:GEWSRT]2.0.CO;2
Caggianelli, A., Prosser, G., & Del Morro, A. (2000). Cooling and exhumation history of deep-seated and shallowlevel, late Hercynian granitoids from Calabria. Geological Journal, 35, 33-42. https://doi.org/10.1002/(SICI)1099-1034(200001/03)35:1<33::AID-GJ836>3.0.CO;2-U
Cardona, A., Valencia, V., Weber, M., Duque, J., Montes, C., Ojeda, G., Reiners, P., Domanik, K., Nicolescu, S., & Villagómez, D. (2011). Transient Cenozoic tectonic stages in the southern margin of the Caribbean plate: U-Th/He thermochronological constraints from Eocene plutonic rocks in the Santa Marta massif and Serranía de Jarara, Northern Colombia. Geological Acta, 9(3-4), 445-466. https://doi.org/10.1344/105.000001739
Carroll, M., & Wyllie, P. (1990). The system tonalite-H2O at 15 kbar and the genesis of calc-alkaline magmas. American Mineralogist, 75(3-4), 345-357.
Carslaw, H., & Jaeger, J. (1959). Conduction of heat in solids. Clarendon Press. https://doi.org/10.2307/3610347
Cherniak, D., & Watson, E. (2001). Pb diffusion in zircon. Chemical Geology, 172(1-2), 5-24. https://doi.org/10.1016/S0009-2541(00)00233-3
Chew, D., & Spikings, R. (2015). Geochronology and thermochronology using apatite: Time and temperature lower crust to surface. Elements, 11, 189-194. https://doi.org/10.2113/gselements.11.3.189
Clarke, D. (1992). Granitoid rocks. Chapman y Hall. Topics in the Earth Sciences, 7.
Coleman, D., Gray, W., & Glazner, A. (2004). Rethinking the emplacement and evolution of zoned plutons: Geochronologic evidence for incremental assembly of the Tuolumne Intrusive Suite, California. Geology, 32(5), 433-436. https://doi.org/10.1130/G20220.1
Corfu, F., Hanchar, J., Hoskin, P., & Kinny, P. (2003). Atlas of zircon textures. Reviews in Mineralogy and Geochemistry, 53(1), 469-500. https://doi.org/10.2113/0530469
Corrigan, J. (1991). Inversion of apatite fission track data for thermal history information. Journal of Geophysical Research, 96(B6), 10347-10360. https://doi.org/10.1029/91JB00514
Cortés Calderón, E. (2015). Geochemical behavior and emplacement conditions of the Ibagué Batholith: Regional implications (tesis de grado), Universidad de los Andes.
Dahl, P. (1996). The crystal-chemical basis for Ar retention in micas: Inferences from interlayer partitioning and implications for geochronology. Contributions to Mineralogy and Petrolpgy, 123, 22-39. https://doi.org/10.1007/s004100050141
Dalrymple, G., & Lanphere, M. (1969). Potassium-argon dating: Principles, techniques and applications to geochronology. Freeman.
Deeken, A. S. (2006). Development of the Southern Eastern Cordillera, NW Argentina, constrained by apatite fission track thermochronology: From early Cretaceous extension to middle Miocene shortening. Tectonics, 25(6). https://doi.org/10.1029/2005TC001894
Dodson, M. (1973). Closure temperature in cooling geochronological and petrological systems. Contributions to Mineralogy and Petrology, 40(3), 259-274. https://doi.org/10.1007/BF00373790
Dodson, M. (1979). Theory of cooling ages. En E. Jäger y J. C. Hunziker (eds.), Lectures in isotope geology (pp. 194-202), Springer. https://doi.org/10.1007/978-3-642-67161-6_14
Donelick, R. (1993). Apatite etching characteristics versus chemical composition. Nuclear Tracks and Radiation Measurements, 21(604), 1359-0189
Donelick, R., O’Sullivan, P., & Ketcham, R. (2005). Apatite fission-track analysis. Reviews in Mineralogy and Geochemistry, 58, 49-94. https://doi.org/10.2138/rmg.2005.58.3
Ehlers, T. (2005). Crustal thermal processes and the interpretation of thermochronometer data. Reviews in Mineralogy and Geochemistry, 58(1), 315-350. https://doi.org/10.2138/rmg.2005.58.12
England, P., & Molnar, P. (1990). Surface uplift, uplift of rocks, and exhumation of rocks. Geology, 18(12), 1173-1177. https://doi.org/10.1130/0091-7613(1990)018<1173:SUUORA>2.3.CO;2
Esser, R., McIntosh, W., Heizler, M., & Kyle, P. (1997). Excess argon in melt inclusions in zero-age anorthoclase feldspar from Mt Erebus, Antarctica, as revealed by the 40Ar/39Ar method. Geochimica et Cosmochimica Acta, 61(18), 3789- 3801. https://doi.org/10.1016/S0016-7037(97)00287-1
Farley, K. (2000). Helium diffusion from apatite: General behavior as illustrated by Durango fluorapatite. Journal of Geophysical Research: Solid Earth, 105(B2), 2903-2914. https://doi.org/10.1029/1999JB900348
Farley, K. (2002). (U-Th)/He Dating: Techniques, calibrations, and applications. Reviews in Mineralogy and Geochemistry, 47(1), 819-844. https://doi.org/10.2138/rmg.2002.47.18
Faure, G., & Mensing, T. (2005). Isotopes: Principles and applications. John Wiley & Sons.
Ferry, J., & Watson, E. (2007). New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contribution to Mineralogy and Petrology, 154, 429-437. https://doi.org/10.1007/s00410-007-0201-0
Fleck, R., Sutter, J., & Elliot, D. (1977). Interpretation of discordant 40Ar-39Ar age-spectra of Mesozoic tholeiites from Antarctica. Geochimica et Cosmochimica Acta, 41, 15-32.
Fleischer, R., Price, P., & Walker, R. (1975). Nuclear tracks in solids: Principles and applications. University of California Press.
Foster, D., Miller, C., Harrison, T., & Hoisch, T. (1992). 40Ar/39Ar thermochronology and thermobarometry of metamorphism, plutonism, and tectonic denudation in the Old Woman Mountains area, California. GSA Bulletin, 104, 176-191. https://doi.org/10.1130/0016-7606(1992)104<0176:AATATO>2.3.CO;2
Foster, D., Schafer, C., Fanning, C., & Hyndman, D. (2001). Relationships between crustal partial melting, plutonism, orogeny, and exhumation: Idaho-Bitterroot batholith. Tectonophysics, 342 (3-4), 313-350. https://doi.org/10.1016/S0040-1951(01)00169-X
Gallagher, K. (2012). Transdimensional inverse thermal history modeling for quantitative thermochronology. Journal of Geophysical Research: Solid Earth, 117(B2). https://doi. org/10.1029/2011JB008825
Gallagher, K., Brown, R., & Johnson, C. (1998). Fission track analysis and its applications to geological problems. Annual Review of Earth and Planetary Sciences, 26, 519-572. https://doi.org/10.1146/annurev.earth.26.1.519
Garver, J. I., & Kamp, P. J. (2002). Integration of zircon color and zircon fission-track zonation patterns in orogenic belts: Application to the Southern Alps, New Zealand. Tectonophysics, 349(1-4), 203-219. https://doi.org/10.1016/S0040-1951(02)00054-9
Garver, J. I., Riley, B. C. D., & Wang, G. (2002). Partial resetting of fission tracks in detritai zircon. Geotemas, (4), 73-76.
George, P. (1993). Tectonic implications of fission-track thermochronology and amphibole thermobarometry studies of the Northern Peninsular Ranges Batholith, Southern California (tesis Ph. D.), The Louisiana State University.
Gil Rodríguez, J. (2014). Petrology of the Betulia Igneous Complex, Cauca, Colombia. Journal of South American Earth Sciences, 56, 339-356. https://doi.org/10.1016/j.jsames.2014.09.016
Gleadow, A., & Fitzgerald, P. (1987). Uplift history and structure of the Transantarctic Mountains: New evidence from fission track dating of basement apatites in the Dry Valleys area, Southern Victoria Land. Earth and Planetary Science Letters, 82, 1-14.
Gleadow, I., Duddy, I., & Lovering, J. (1983). Fission track analysis: A new tool for the evaluation of thermal histories and hydrocarbon potential. The APPEA Journal, 23(1), 93-102. https://doi.org/10.1071/AJ82009
Glorie, S., Alexandrov, I., Nixon, A., Jepson, G., Gillespie, J., & Jahn, B.-M. (2017). Thermal and exhumation history of Sakhalin Island (Russia) constrained by apatite U-Pb and fission track thermochronology. Journal of Asian Earth Sciences, 143, 326-342. https://doi.org/10.1016/j.jseaes.2017.05.011
Gómez, J., Montes, N., Alcárcel, F., & Ceballos, J. (2015). Catálogo de dataciones radiométricas de Colombia en ArcGIS y Google Earth. En J. Gómez, & M. F. Almanza (eds.), Compilando la geología de Colombia: Una visión a 2015. Publicaciones Geológicas Especiales, vol. 33. Servicio Geológico Colombiano.
Green, P., Duddy, I., Gleadow, A., & Lovering, J. (1989). Apatite fission track analysis as palaeotemperature indicator for hydrocarbon exploration. En N. D. Naeser & T. H. McCulloh (eds.) Thermal history of sedimentary (pp. 181-195), Springer-Verlag. https://doi.org/10.1007/978-1-4612-3492-0_11
Green, P., Duddy, I., Gleadow, A., Tingate, P., & Laslett, G. (1985). Fission-track annealing in apatite: Track length measurements and the form of the Arrhenius plot. Nuclear Tracks and Radiation Measurements, 10(3), 323-328. https://doi.org/10.1016/0735-245X(85)90121-8
Green, P., Duddy, I., Gleadow, A., Tingate, P., & Laslett, G. (1986). Thermal annealing of fission tracks in apatite: 1. A qualitative description. Chemical Geology (Isotope Geoscience Section), 59, 237-253. https://doi.org/10.1016/0168- 9622(86)90074-6
Green, P., Duddy, I., Laslett, G., Hegarty, K., Gleadowa, A., & Lovering, J. (1989). Thermal annealing of fission tracks in apatite: 4. Quantitative modelling techniques and extension to geological timescales. Chemical Geology, 79: 155- 182. https://doi.org/10.1016/0168-9622(89)90018-3
Grove, M., & Harrison, T. (1996). 40Ar* diffusion in Fe-rich biotite. American Mineralogist, 81(7-8), 940-951. https://doi. org/10.2138/am-1996-7-816
Hammarstrom, J., & Zen, E.-A. (1986). Aluminum in hornblende: An empirical igneous geobarometer. American Mineralogist, 71, 1297-1313.
Harrison, T. (1982). Diffusion of 40Ar in hornblende. Contributions to Mineralogy and Petrology, 78(3), 324-331. https:// doi.org/10.1007/BF00398927
Harrison, T., Armstrong, R., Naeser, C., & Harakal, J. (1979). Geochronology and thermal history of the Coast Plutonic Complex, near Prince Rupert, British Columbia. Canadian Journal of Earth Sciences, 16(3), 400-410. https://doi. org/10.1139/e79-038
Harrison, T., Celerier, J., Aikman, A., Hermann, J., & Heizler, M. (2009). Diffusion of 40Ar in muscovite. Geochimica et Cosmochimica Acta, 73(4), 1039-1051. https://doi.org/10.1016/j.gca.2008.09.038
Harrison, T., & Clarke, G. (1979). A model of the thermal effects of intrusion and uplift as applied to Quottoon pluton British Columbia. Canadian Journal of Earth Sciences, 16(3), 411-420. https://doi.org/10.1139/e79-039
Harrison, T., Duncan, I., & Mcdougall, I. (1985). Diffusion of 40Ar in biotite: Temperature, pressure and compositional effects. Geochimica et Cosmochimica Acta, 49(11), 2461- 2468. https://doi.org/10.1016/0016-7037(85)90246-7
Harrison, T., Watson, E., & Aikman, A. (2007). Temperature spectra of zircon crystallization in plutonic rocks. Geology, 35(7), 635-638. https://doi.org/10.1130/G23505A.1
Hayden, L. A., & Watson, E. B. (2007). Rutile saturation in hydrous siliceous melts and its bearing on Ti-thermometry of quartz and zircon. Earth and Planetary Science Letters, 258, 561-568. https://doi.org/10.1016/j.epsl.2007.04.020
Hayden, L., Watson, E., & Wark, D. (2008). A thermobarometer for sphene. Contributions to Mineralogy and Petrology, 155(4), 529-540. https://doi.org/10.1007/s00410-007-0256-y
Holland, T., & Blundy, J. (1994). Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contributions to Mineralogy and Petrology, 116, 433-447. https://doi.org/10.1007/BF00310910
Hunziker, J., Desmons, J., & Hurford, A. (1992). Thirty-two years of geochronological work in the Central and Western Alps: A review on seven maps. Mémoires de Géologie (Lausanne), 13.
Hurford, A. (1986). Cooling and uplift patterns in the Lepontine Alps South Central Switzerland and an age of vertical movement on the Insubric fault line. Contributions to Mineralogy and Petrology, 92, 413-427. https://doi.org/10.1007/ BF00374424
Kelley, S. (2002). K-Ar and Ar-Ar Dating. Reviews in Mineralogy and Geochemistry, 47(1), 785-818. https://doi. org/10.2138/rmg.2002.47.17
Ketcham, R. (2005). Forward and inverse modeling of low-temperature thermochronometry data. Reviews in Mineralogy and Geochemistry, 58(1), 275-314. https://doi.org/10.2138/ rmg.2005.58.11
Ketcham, R., Donelick, R., & Carlson, W. (1999). Variability of apatite fission-track annealing kinetics: III. Extrapolation to geological time scales. American Mineralogist, 84, 1235- 1255. https://doi.org/10.2138/am-1999-0903
Kramar, N., Cosca, M., & Hunziker, J. (2001). Heterogeneous Ar-40* distributions in naturally deformed muscovite: In situ UV-laser ablation evidence for micro structurally controlled intra-grain diffusion. Earth and Planetary Science Letters, 192(3), 377-388. https://doi.org/10.1016/S0012- 821X(01)00456-3
Lanphere, M., & Dalrymple, G. (1971). A test of the 40Ar/39Ar age spectrum technique on some terrestrial material. Earth and Planetary Science Letters, 12, 359-372. https://doi.org/10.1016/0012-821X(71)90020-3
León, S., Cardona, A., Parra, M., Sobel, E., Jaramillo, J., Glodny, J., Valencia, V. A., Chew, D., Montel, C., Posada, G., Monsalve, G., & Pardo Trujillo, A. (2018). Transition from collisional to subduction-related regimes: An example from Neogene Panama-Nazca-South America interactions. Tectonics, 37, 119-139. https://doi.org/10.1002/2017TC004785
Ludwig, K. (2009). User’s manual for Isoplot 3.7: A geochronological toolkit for Microsoft Excel. Special Publication n.° 4. Geochronology Center.
Martínez, L., & Zuluaga, C. (2010). Thermal modeling of pluton emplacement and associated contact metamorphism: Parashi stock emplacement in the Serranía de Jarara (alta Guajira, Colombia). Earth Sciences Research Journal, 14(2), 145-152.
McDougall, I., & Harrison, T. (1999). Geochronology and thermochronology by the 40Ar/39Ar method. Oxford University Press.
McInnes, B., Farley, K., Sillitoe, R., & Kohn, B. (1999). Application of apatite (U-Th)/He thermochronometry to the determination of the sense and amount of vertical fault displacement at the Chuquicamata porphyry copper deposit, Chile. Economic Geology, 94(6), 937-947. https://doi. org/10.2113/gsecongeo.94.6.937
Miller, J., Matzel, J., Miller, C., Burguess, S., & Miller, R. (2007). Zircon growth and recycling during the assembly of large, composite arc plutons. Journal of Volcanology and Geothermal Research, 167, 282-299. https://doi.org/10.1016/j.jvolgeores.2007.04.019
Mutch, E., Blundy, J., Tattitch, B., Cooper, F., & Brooker, R. (2016). An experimental study of amphibole stability in low-pressure granitic magmas and a revised Al-in-hornblende geobarometer. Contributions to Mineralogy and Petrology, 171(85), 1-27. https://doi.org/10.1007/s00410- 016-1298-9
Nasdala, L., Wenzel, M., Vavra, G., Irmer, G., Wenzel, T., & Kober, B. (2001). Metamictisation of natural zircon: Accumulation versus thermal annealing of radioactivity-induced damage. Contributions to Mineralogy and Petrology, 141(2), 125-144. https://doi.org/10.1007/s004100000235
Nieto Samaniego, A., Olmos Moya, M., Levresse, G., Alaniz Álvarez, S., Abdullin, F., Pilar Martínez, A., & Xu, S. (2019). Thermocronology and exhumation rates of granitic intrusions at Mesa-Central, Mexico. International Geology Review, 62(3), 311-319. https://doi.org/10.1080/00206814.20 19.1602789
Oriolo, S., Wemmer, K., Oyhantçabal, P., Fossen, H., Schulz, B., & Siegesmund, S. (2018). Geochronology of shear zones; A review. Earth-Science Reviews, 185, 665-683. https://doi. org/10.1016/j.earscirev.2018.07.007
Parada, M., Féraud, G., Fuentes, F., Aguirre, L., Morata, D., & Larrondo, P. (2005). Ages and cooling history of the Early Cretaceous Caleu pluton: Testimony of a switch from a rifted to a compressional continental margin in central Chile. Journal of the Geological Society, 162, 205, 273-287. https:// doi.org/10.1144/0016-764903-173
Paterson, S., Fowler, T., & Miller, R. (1996). Pluton emplacement in arcs: A crustal-scale exchange process. Earth and Environmental Science Transactions of The Royal Society of Edinburgh, 87(1-2), 115-123. https://doi.org/10.1017/ S0263593300006532
Peacock, S. (1989). Thermal modeling of metamorphic pressure‐temperature‐time paths: A forward approach. Metamorphic Pressure-Temperature-Time Paths, 7, 57-102. https:// doi.org/10.1029/SC007p0057
Peyton, S., & Carrapa, B. (2013a). An introduction to low-temperature thermochronologic techniques, methodology, and applications. En C. Knight, J. Cuzella & L. D. Cress (eds.), Application of structural methods to Rocky Mountain hydrocarbon exploration and development (pp. 15-36), AAPG Studies in Geology, 65. https://doi.org/10.1306/13381688St653578
Peyton, S., & Carrapa, B. (2013b). An overview of low-temperature thermochronology in the Rocky Mountains and its application to petroleum system analysis. En C. Knight, J. Cuzella & L. D. Cress (eds.), Application of structural methods to Rocky Mountain hydrocarbon exploration and development (pp. 37-70), AAPG Studies in Geology, 65. https://doi.org/10.1306/13381689St653578
Pitcher, W. (1997). The nature and origin of granite. Springer Science+Business Media Dordrecht. https://doi.org/10.1007/978- 94-011-5832-9
Pupin, J. (1980). Zircon and granite petrology. Contributions to Mineralogy and Petrology, 73(3), 207-220. https://doi. org/10.1007/BF00381441
Putirka, K., Johnson, M., Kinzler, R., Longhi, J., & Walker, D. (1996). Thermobarometry of mafic igneous rocks based
clinopyroxene-liquid equilibria, 0-30 kbar. Contributions to Mineralogy and Petrology, 123, 92-108. https://doi. org/10.1007/s004100050145
Rahn, M. K., Brandon, M. T., Batt, G. E., & Garver, J. I. (2004). A zero-damage model for fission-track annealing in zircon. American Mineralogist, 89(4), 473-484. https://doi. org/10.2138/am-2004-0401
Reiners, P., & Brandon, M. (2006). Using thermochronology to understand orogenic erosion. Annual Review of Earth and Planetary Sciences, 34, 419-466. https://doi.org/10.1146/ annurev.earth.34.031405.125202
Reiners, P., Carlson, R., Renne, P., Cooper, M., Granger, D., McLean, N., & Schoene, B. (2017). Geochronology and thermochronology. John Wiley & Sons. https://doi. org/10.1002/9781118455876
Restrepo Moreno, S., Foster, D., Bernet, M., Min, K., & Noriega, S. (2019). Morphotectonic and orogenic development of the Northern Andes of Colombia: A low-temperature thermochronology perspective. En F. Cediel, R. P. Shaw (eds.), Geology and tectonics of Northwestern South America, Frontiers in Earth Sciences. https://doi.org/10.1007/978-3-319- 76132-9_11
Restrepo Moreno, S., Foster, D., Stockli, D., & Parra Sánchez, L. (2009). Long-term erosion and exhumation of the “Altiplano Antioqueño”, Northern Andes (Colombia) from apatite (U-Th)/He thermochronology. Earth and Planetary Science Letters, 278(1-2), 1-12. https://doi.org/10.1016/j. epsl.2008.09.037
Ridolfi, F., & Renzulli, A. (2012). Calcic amphiboles in calc-alkaline and alkaline magmas: Thermobarometric and chemometric empirical equations valid up to 1130 °C and 2.2 GPa. Contribution to Mineralogy and Petrology, 163, 877-895. https://doi.org/10.1007/s00410-011-0704-6
Ridolfi, F., Renzulli, A., & Puerini, M. (2010). Stability and chemical equilibrium of amphibole in calc-alkaline magmas: An overview, new thermobarometric formulations and application to subduction-related volcanoes. Contribution to Mineralogy and Petrology, 160(1), 45-66. https://doi. org/10.1007/s00410-009-0465-7
Ring, U., Brandon, M., Willett, S., & Lister, G. (1999). Exhumation processes. Special Publications, 154, Geological Society. https://doi.org/10.1144/GSL.SP.1999.154.01.01
Sáenz, E. (2003). Fission track thermochronology and denudational response to tectonics in the north of The Colombian Central Cordillera (tesis de maestría), Shimane University.
Sáenz, E., Paucar, C., & Restrepo, J. (1996). Estudio de la evolución térmica del Batolito Antioqueño por huellas de fisión. 7th Congreso Colombiano de Geología, Bogotá.
Schaen, A. J., Jicha, B. R., Hodges, K. V., Vermeesch, P., Stelten, M. E., Mercer, C. M. Phillips, D., Rivera, T., Jourdan, F., Matchan, E., Hemming, S., Morgan, L., Kelley, S., Cassata, W., Heizler, M., Vasconcelos, P., Benowitz, J., Koppers, A., Mark, D., Niespolo, E., … Singer, H. (2020). Interpretingandreporting40Ar/39Ar geochronologicdata. GSA Bulletin. https://doi.org/10.1130/B35560.1
Schmidt, M. (1992). Amphibole composition in tonalite as a function of pressure: An experimental calibration of the AI-in-hornblende barometer. Contributions to Mineralogy and Petrology, 110, 304-310. https://doi.org/10.1007/ BF00310745
Schmidt, M. (1993). Phase relations and compositions in tonalite as a function of pressure: An experimental study at 650 C. American Journal of Science, 293, 1011-1011.
Spencer, C. J., Kirkland, C. L., & Taylor, R. J. (2016). Strategies towards statistically robust interpretations of in situ U-Pb zircon geochronology. Geoscience Frontiers, 7(4), 581-589. https://doi.org/10.1016/j.gsf.2015.11.006
Tollari, N., Toplis, M., & Barnes, S.-J. (2006). Predicting phosphate saturation in silicic magmas: An experimental study of the effects of melt composition and temperature. Geochimica et Cosmochimica Acta, 70, 1518-1536. https://doi. org/10.1016/j.gca.2005.11.024
Treloar, P. (1981). Garnet-biotite-cordierite thermometry and barometry in the Cashel thermal aureole, Connemara, Ireland. Mineralogical Magazine, 44, 183-189. https//doi. org/10.1180/minmag.1981.044.334.11
Turner, G. (1970). 40Ar/39Ar dating of lunar rock samples. Science, 167, 466-468.
Van der Lelij, R., Spikings, R., & Mora, A. (2016). Thermochronology and tectonics of the Mérida Andes and the Santander Massif, NW South America. Lithos, 248-251, 220-239. https://doi.org/10.1016/j.lithos.2016.01.006
Vermeesch, P. (2018). IsoplotR: A free and open toolbox for geochronology. Geoscience Frontiers, 9(5), 1479-1493. https://doi.org/10.1016/j.gsf.2018.04.001
Villagómez, D., & Spikings, R. (2013). Thermochronology and tectonics of the Central and Western Cordilleras of Colombia: Early Cretaceous-Tertiary evolution of the Northern Andes. Lithos, 160(161), 228-249. https://doi.org/10.1016/j.lithos.2012.12.008
Villagómez, D., Spikings, R., Mora, A., Guzmán, G., Ojeda, G., Córtes, E., & Van der Lelij, R. (2011). Vertical tectonics at a continental crust oceanic plateau plate boundary zone: Fission track thermochronology of the Sierra Nevada de Santa Marta, Colombia. Tectonics, 30, 1-18. https://doi. org/10.1029/2010TC002835
Wagner, G., Reimer, G., & Jager, E. (1977). Cooling ages derived by apatite fission-track, with Rb-Sr and K-Ar dating: The uplift and cooling history of the Central Alps. Memorie degli Istituti di Geologia e Mineralogia dell’ Universita di Padova, 30(28), 1-27.
Wartho, J., Rex, D., & Guise, P. (1996). Excess argon in amphiboles linked to greenschist facies alteration in Kamila amphibolite belt, Kohistan island arc system, Northern Pakiston: Insights from 40Ar/39Ar step-heating and acid leaching experiments. Geological Magazine, 133, 595-609. https://doi.org/10.1017/S0016756800007871
Watson, E., & Harrison, T. (1983). Zircon saturation revisited’ temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters, 64, 295- 304. https://doi.org/10.1016/0012-821X(83)90211-X
Watson, E., Wark D. A., & Thomas, J. (2006). Crystallization thermometers for zircon and rutile. Contributions to Mineral and Petrology, 151, 413-433. https://doi.org/10.1007/s00410-006-0068-5
Wei, C., & Powell, R. (2004). Calculated phase relations in high pressure metapelites in the system NKFMASH (Na2O-K2O-FeO-MgO-Al2O3-SiO2-H2O). Journal of Petrology, 45, 183-202. https://doi.org/10.1093/petrology/egg085
Wei, C., & Powell, R. (2006). Calculated phase relations in the system NCKFMASH (Na2O-CaO-K2O-FeO-MgO-Al2O3- SiO2-H2O) for high pressure metapelites. Jounal of Petrology, 47, 385-408. https://doi.org/10.1093/petrology/egi079
Wendt, I., & Carl, C. (1991). The statistical distribution of the mean squared weighted deviation. Chemical Geology Isotope Geoscience Section 86, 275-285. http://dx.doi.org/10.1016/0168-9622(91)90010-T
Wolf, R., Farley, K., & Kass, D. (1998). Modeling of the temperature sensitivity of the apatite (U-Th)/He thermochronometer. Chemical Geology, 148(1-2), 105-114. https://doi.org/10.1016/S0009-2541(98)00024-2
Wolf, R., Farley, K., & Silver, L. (1996). Helium diffusion and low-temperature thermochronometry of apatite. Geochimica et Cosmochimica Acta, 60(21), 4231-4240. https://doi.org/10.1016/S0016-7037(96)00192-5
Wu, C.-M., Zhang, J. & Ren, L.-D. (2004a). Empirical Garnet-Biotite-Plagioclase-Quartz (GBPQ) Geobarometry in Medium- to High-Grade Metapelites. Journal of Petrology, 45(9), 1907-1921. https://doi.org/10.1093/petrology/egh038
Wu, C.-M., Zhang, J., & Ren, L.-D. (2004b). Empirical garnet-muscovite-plagioclase-quartz geobarometry in medium- to high-grade metapelites. Lithos, 78, 319-332. https://doi.org/10.1016/j.lithos.2004.06.008
Zeitler, P. (1985). Cooling history of the NW Himalaya, Pakistan. Tectonics, 4(1), 127-151. https://doi.org/10.1029/TC004i001p00127
Zeitler, P., Johnson, N., Naeser, C., & Tahirkheli, R. (1982). Fission-track evidence for Quaternary uplift of the Nanga Parbat region, Pakistan. Nature, 298 (5871), 255-257. https://doi.org/10.1038/298255a0
Zen, E., & Hammarstrom, J. (1984). Magmatic epidote and its petrologic significance. Geology, 12, 515-518. https://doi.org/10.1130/0091-7613(1984)12<515:MEAIPS>2.0.CO;2