Integration of geophysical information with geological cartography for mineral resources research and other applications in Colombia: examples from the Serranía de San Lucas, Antioquia Batholith and eastern Amazonia
DOI:
https://doi.org/10.32685/0120-1425/bol.geol.48.Spl.1.2021.654Keywords:
airborne geophysics, gamma spectrometric data, magnetic data, chronostratigraphic units, ternary compositionLicense
Copyright (c) 2022 Servicio Geológico Colombiano
This work is licensed under a Creative Commons Attribution 4.0 International License.
Downloads
Additional Files
How to Cite
Issue
Section
Published
Abstract
Airborne geophysical information is used in the interpretation of geological features. The variations observed in airborne magnetic and gamma spectrometric data are used mainly to support the differentiation of geological units, to delimitate structures and to define compositional/lithological changes. In this context, the objective of this study is to support geological mapping through airborne magnetometry and gamma spectrometry geophysical data. Examples from two regions of the Colombian territory: a) the Serranía de San Lucas-Antioqueño Batholith and b) eastern Colombia are presented. Gamma spectrometric data are used to generate images of the K, U and Th channels in a ternary (RGB false color) map for the purpose of delimitate geological-geophysical domains. The magnetometry information was processed to highlight anomalous magnetic features and provide information about the structural framework of each of the areas of interest.
In the Serranía de San Lucas and Antioquia Batholith areas, 27 gamma spectrometric domains were interpreted primarily from the ternary composition images. Within these domains, a good correlation with each of the chronostratigraphic units was observed, which enabled the identification and delimitation of areas with high or low concentrations of radioelements. In addition, the correlation of magnetic domains with high and low magnetic intensities and textures showed contrasts between igneous rocks, metamorphic rocks and sedimentary rocks. In the eastern zone, due to its fairly generalized geology, the geophysical information gained from both gamma spectrometry and magnetometry serves as a support to refine and delimitate the present geological units as well as their structural framework.
References
Abbass, A., & Mallam, A. (2013). Investigating the structures within the Lower Benue and Upper Anambra Basins, Nigeria, using first vertical derivative, analytical signal and (CET) Centre for Exploration Targeting plug-in. Earth Sciences, 2(5), 104-112. https://doi.org/10.11648/J.EARTH.20130205.11
Gómez, J., Montes, N. E., Nivia, A., & Diederix, H. (comp.). (2015). Mapa geológico de Colombia 2015. Escala 1:1 000 000. Servicio Geológico Colombiano. https://doi.org/10.32685/10.143.2015.935
Gunn, P. J., Maidment, D., & Milligan, P. R. (1997). Interpreting aeromagnetic data in areas of limited outcrop. AGSO Journal of Australian Geology and Geophysics, 17(2), 175-185.
International Atomic Energy Agency. (2003). Guidelines for radioelement mapping using gamma ray spectrometry data. IAEA-TECDOC-1363.
Isles, D. J., & Rankin, L. R. (2013). Geological interpretation of aeromagnetic data. Society of Exploration Geophysicists and the Australian Society of Exploration Geophysicists. https://doi.org/10.1190/1.9781560803218
Japan Association on Remote Sensing. (1993). Remote sensing note.
Killeen, P. G., Mwenifumbo, C. J., & Ford, K. L. (2015). Tools and techniques: Radiometric methods. Treatise on Geophysics, 11, 447-524. https://doi.org/10.1016/B978-0-444-53802-4.00209-8
Marangoni, Y. R. (2014). AGG0324 - Métodos Potenciais. Parte 3: O Campo Magnético Conceitos e aplicações em Geofísica. In G. e. Universidade de São Paulo. Instituto de Astronomia, AGG0324 - Métodos Potenciais (pp. 24-33). São Paulo: Universidade de São Paulo.
Martelet, G., Truffert, C., Tourlière, B., Ledru, P., & Perrin, J. (2006). Classifying airborne radiometry data with Agglomerative Hierarchical Clustering: A tool for geological mapping in context of rainforest (French Guiana). International Journal of Applied Earth Observation and Geoinformation, 8(3), 208-223. https://doi.org/10.1016/J.JAG.2005.09.003
Miller, H. G., & Singh, V. (1994). Potential field tilt—a new concept for location of potential field sources. Journal of Applied Geophysics, 32(2-3), 213-217. https://doi.org/10.1016/0926-9851(94)90022-1
Moyano, I., Lara, N., Arias, H., Gómez, E., Ospina, D., Puentes, M., Robayo, A., Rojas, O., & Torrado, S. (2020). Mapa de anomalías geofísicas de Colombia para recursos minerales, versión 2020. Servicio Geológico Colombiano.
Reeves, C. (2005). Aeromagnetic surveys: Principles, practice, and interpretation. Geosoft.
Richards, J. A. (2013). Supervised classification techniques. In Remote sensing digital image analysis. Springer. https://doi.org/10.1007/978-3-642-30062-2_8
Sepúlveda, J., Celada, C. M., Leal-Mejía, H., Murillo, H., Rodríguez, A., Gómez, M., Prieto, D., Jiménez, C. A., Rache, A., & Hart, C. (2020). Mapa metalogénico de Colombia 2020. Memoria explicativa. Servicio Geológico Colombiano.
Thébault, E., Finlay, C. C., Beggan, C. D., Alken, P., Aubert, J., Barrois, O., Bertrand, F., Bondar, T., Boness, A., Brocco, L., Canet, E., Chambodut, A., Chulliat, A., Coïsson, P., Civet, F., Du, A., Fournier, A., Fratter, I., Gillet, N., … Zvereva, T. (2015). International Geomagnetic Reference Field: the 12th generation. Earth, Planets and Space, 67, 79. https://doi.org/10.1186/s40623-015-0228-9
Yang, C., Yang, C., Kao, S., Lee, F., & Hung, P. (2004). Twelve different interpolation methods: A case study of Surfer 8.0. In Proceedings of the XXth ISPRS Congress (pp. 778-785). http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.183.7288