Graphical representation of structural data in the field: A methodological proposal for application in deformed areas

  • Julián Andrés López Isaza Dirección de Geociencias Básicas, Servicio Geológico Colombiano, Bogotá, Colombia https://orcid.org/0000-0002-5555-5527
  • Mario Andrés Cuéllar Cárdenas Dirección de Geociencias Básicas, Servicio Geológico Colombiano, Bogotá, Colombia https://orcid.org/0000-0003-0993-7206
  • Lina María Cetina Tarazona Dirección de Geociencias Básicas, Servicio Geológico Colombiano, Bogotá, Colombia https://orcid.org/0000-0001-6814-480X
  • Anny Julieth Forero Ortega Dirección de Geociencias Básicas, Servicio Geológico Colombiano, Bogotá, Colombia https://orcid.org/0000-0001-8222-9148
  • Ana Milena Suárez Arias Dirección de Geociencias Básicas, Servicio Geológico Colombiano, Bogotá, Colombia
  • Oscar Freddy Muñoz Rodríguez Dirección de Geociencias Básicas, Servicio Geológico Colombiano, Bogotá, Colombia
  • Luis Miguel Aguirre Hoyos Dirección de Geociencias Básicas, Servicio Geológico Colombiano, Bogotá, Colombia https://orcid.org/0000-0002-9713-2055
  • María Juliana Gutiérrez López Dirección de Geociencias Básicas, Servicio Geológico Colombiano, Bogotá, Colombia
Palabras clave: Registro de datos estructurales, red de proyección modificada, proyección estereográfica, proyección de igual área, diagrama rosa, elementos de fábrica

Resumen

La descripción de los elementos de fábrica representados por las estructuras lineales y planares presentes a diferentes escalas es uno de los aspectos más relevantes del trabajo de campo. Así, para el registro sistemático de planos y lineaciones, codificados como S (superficies planas), F (pliegues), L (lineamientos), entre otros, se propone un esquema que permite el almacenamiento ordenado de las mediciones realizadas. Este esquema incluye información relacionada con la cinemática, los indicadores cinemáticos y la certeza o confiabilidad que se otorga al movimiento asignado. Durante el trabajo de campo, la representación gráfica de las mediciones estructurales se realiza en redes de proyección modificadas que incluyen círculos concéntricos para cada buzamiento, y permiten dibujar al trazo los datos estructurales en el afloramiento, prescindiendo del uso de papel de calco o transparente. Como tal, los estereogramas resultantes de la representación gráfica en la red de proyección estereográfica de Wulff modificada, y la red de igual área de Schmidt modificada, deben complementarse con diagramas rosa para la visualización del ordenamiento espacial. Durante las campañas de campo, en los afloramientos es fundamental visualizar la orientación espacial de los datos en los diagramas para determinar las principales tendencias estructurales, la vergencia, el sentido cinemático de fallas y zonas de cizallamiento, los tensores de paleo-esfuerzo, y diferenciar dominios estructurales, entre otros factores. Esta información apoya la reconstrucción de la historia geológica y tectónica y el establecimiento de las relaciones entre los diferentes procesos geológicos.

Referencias bibliográficas

Abdunaser, K. M. (2015). Satellite imagery for structural geological interpretation in Western Sirt Basin, Libya: Implication for petroleum exploration. Geosciences, 5(1), 8-25.

Allmendinger, R. W. (2017). Stereonet mobile for iOS v 3.0. http://www.geo.cornell.edu/geology/faculty/RWA/programs/stereonet-mobile.html

Allmendinger, R. W. (2019). Modern structural practice: A structural geology laboratory manual for the 21st Century. http://www.geo.cornell.edu/geology/faculty/RWA/structure-lab-manual/

Allmendinger, R. W., Cardozo, N., & Fisher, D. (2012). Structural geology algorithms: Vectors and tensors. Cambridge University Press.

Allmendinger, R. W., Siron, C. R., & Scott, C. P. (2017). Structural data collection with mobile devices: Accuracy, redundancy, and best practices. Journal of Structural Geology, 102, 98-112. https://doi.org/10.1016/j.jsg.2017.07.011

Ahmadirouhani, R., Rahimi, B., Karimpour, M. H., Malekzadeh S., A., Afshar N., S., & Pour, A. B. (2017). Fracture mapping of lineaments and recognizing their tectonic significance using SPOT-5 satellite data: A case study from the Bajestan area, Lut Block, east of Iran. Journal of African Earth Sciences, 134, 600-612. https://doi.org/10.1016/j.jafrearsci.2017.07.027

Babín V., R. S., & Gómez O., D. (2010a). Problemas de geología estructural. 1. Conceptos generales. Reduca (Geología), Serie Geología Estructural, 2(1), 1-10.

Babín V., R. S., & Gómez O., D. (2010b). Problemas de geología estructural. 2. Orientación y proyección de planos en el espacio. Reduca (Geología), Serie Geología Estructural, 2(1), 11-23.

Babín V., R. S., & Gómez O., D. (2010c). Problemas de geología estructural. 3. Orientación y proyección de líneas en el espacio. Reduca (Geología), Serie Geología Estructural, 2(1), 24-40.

Babín V., R. S., & Gómez O., D. (2010d). Problemas de geología estructural. 9. Análisis estructural mediante diagramas de contornos. Reduca (Geología), Serie Geología Estructural, 2(1), 148-192.

Bartlett, W. L., Friedman, M., & Logan, J. M. (1981). Experimental folding and faulting of rocks under confining pressure. Part IX: Wrench faults in limestone layers. Tectonophysics, 79(3-4), 255-277.

Blés, J. L. (1977). La fracturation des roches. 2eme partie: Observation et interprétation des fractures naturelles. Bureau de Recherches Géologiques et Minières, Service Géologique National, France.

Borradaile, G. (2003). Statistics of earth science data. Springer.

Bucher, W. H. (1944). Studies for students: The stereographic projection, a handy tool for the practical geologist. The Journal of Geology, 52(3), 191-212. https://doi.org/10.1086/625206

Cardozo, N., & Allmendinger, R. W. (2013). Spherical projections with OSXStereonet. Computers & Geosciences, 51, 193-205. https://doi.org/10.1016/j.cageo.2012.07.021

Chica S., A. (1984). Análisis de estructuras geológicas. Universidad Nacional de Colombia

Compton, R. R. (2016). Geology in the field. Earthspun Books.

Davis, J. C. (2002). Statistics and data analysis in geology. John Wiley & Sons Inc.

Davis, G. H., Reynolds, S. J., & Kluth, C. F. (2012). Structural geology of rocks and regions. John Wiley & Sons, Inc.

Delvaux, D., & Sperner, B. (2003). New aspects of tectonic stress inversion with reference to the Tensor program. In D. A. Nieuwland (ed.), New insights into structural interpretation and modelling. Special Publications, vol. 212. Geological Society of London. https://doi.org/10.1144/GSL.SP.2003.212

Doblas, M. (1987). Criterios del sentido de movimiento en espejos de fricción: Clasificación y aplicación a los granitos cizallados de la sierra de San Vicente (sierra de Gredos). Estudios Geológicos, 43(1-2), 47-55.

Doblas, M. (1998). Slickenside kinematic indicators. Tectonophysics, 295(1-2), 187-197. https://doi.org/10.1016/S0040-1951(98)00120-6

Doblas, M., Mahecha, V., Hoyos, M., & López Ruiz, J. (1997a). Slickenside and fault Surface kinematic indicators on active normal faults of the Alpine Betic cordilleras, Granada, southern Spain. Journal of Structural Geology, 19(2), 159-170. https://doi.org/10.1016/S0191-8141(96)00086-7

Doblas, M., Faulkner, D., Mahecha, V., Aparicio, A., López Ruiz, J., & Hoyos, M. (1997b). Morphologically ductile criteria for the sense of movement on slickensides from an extensional detachment fault in southern Spain. Journal of Structural Geology, 19(8), 1045-1054. https://doi.org/10.1016/S0191-8141(97)00032-1

Fossen, H. (2010). Structural geology. Cambridge University Press.

Fossen, H. (2019). Writing papers with an emphasis on structural geology and tectonics: advices and warnings. Brazilian Journal of Geology, 49(4). https://doi.org/10.1590/2317-4889201920190109

Fossen, H., Cavalcante, G. C. G., Pinheiro, R. V. L., & Archanjo, C. J. (2019). Deformation: progressive or multiphase? Journal of Structural Geology, 125, 82-99. https://doi.org/10.1016/j.jsg.2018.05.006

Gabrielsen, R. H., & Braathen, A. (2014). Models of fracture lineaments: joint swarms, fracture corridors and faults in crystalline rocks, and their genetic relationships. Tectonophysics, 628, 26-44. https://doi.org/10.1016/j.tecto.2014.04.022

Ghosh, S. K. (2013). Structural geology: fundamentals and modern developments. Pergamon Press.

Han, L., Liu, Z., Ning, Y., & Zhao, Z. (2018). Extraction and analysis of geological lineaments combining a DEM and remote sensing images from the northern Baoji loess area. Advances in Space Research, 62(9), 2480-2493. https://doi.org/10.1016/j.asr.2018.07.030

Hancock, P. L. (1985). Brittle microtectonics: Principles and practice. Journal of Structural Geology, 7(3-4), 437-457. https://doi.org/10.1016/0191-8141(85)90048-3

Hanmer, S., & Passchier, C. (1991). Shear-sense indicators: A review. Geological Survey of Canada, Paper 90-17.

Hatcher, R. D. Jr. (1995). Structural geology: Principle, concepts and problems. Prentice Hall.

Hills, E. S. (1972). Elements of structural geology (2nd ed.). Chapman and Hall, Ltd.

Holcombe, R. J. (2015). GEOrient v.9.5.1. Department of Earth Sciences, University of Queensland, Australia. http://www. holcombe.net.au/software/

Hopgood, A. M. (1999). Determination of structural successions in migmatites and gneisses. Springer Science + Busines Media, B. V. https://doi.org/10.1007/978-94-011-4427-8

Hobbs, B. E., Means, W. D., & William, P. E. (1976). An outline of structural geology. John Wiley & Sons, Inc.

Kutty, T. S., & Parthasarathi, G. (1992). Rose.C- A program in “C” for producing high-quality rose diagrams. Computers & Geosciences, 18(9), 1195-1211. https://doi.org/10.1016/0098-3004(92)90040-X

Lisle, R. J., & Leyshon, P. R. (2004). Stereographic projection techniques for geologist and civil engineers. Cambridge University Press. https://doi.org/10.1017/CBO9781139171366

Lee, S., Suh, J., & Choi, Y. (2018). Review of smartphone applications for geoscience: Current status, limitations, and future perspectives. Earth Science Informatics, 11, 463-486. https://doi.org/10.1007/s12145-018-0343-9

López I., J. A., & Zuluaga C., C. A. (2012). Neis de Macuira: Evolución tectónica de las rocas metamórficas paleozoicas de la alta Guajira, Colombia. Boletín de Geología, 34(2), 15- 36.

Mardia, K. V. (1972). Statistics of directional data. Academic Press, Inc.

Marrett, R. A., & Allmendinger, R. W. (1990). Kinematic analysis of fault-slip data. Journal of Structural Geology, 12(8), 973-986. https://doi.org/10.1016/0191-8141(90)90093-E

Marshak, S., & Mitra, G. (1988). Basic methods of structural geology. Prentice Hall.

Mawer, C. K. (1992). Kinematic indicators in shear zones. In M. J. Bartholomew, D. W. Hyndman, D. W. Mogk, and R. Mason (eds.), Basement tectonics 8: Characterization and comparison of ancient and Mesozoic continental margins: Proceedings of the 8th International Conference on Basement Tectonics (Butte, Montana, 1988). Kluwer Academic Publishers. https://doi.org/10.1007/978-94-011-1614-5

McClay, K. R. (1987). The mapping of geological structures. John Wiley & Sons.

McKillup, S., & Dyar, M. D. (2010). Geostatistics explained: An introductory guide for earth scienctists. Cambridge University Press. https://doi.org/10.1017/CBO9780511807558

Nemec, W. (1988). The shape of the rose. Sedimentary Geology, 59(1-2), 149-152.

Novakova, L., & Pavlis, T. L. (2017). Assessment of the accuracy of smart phones and tablets for measurement of planar orientations: A case study. Journal of Structural Geology, 97, 93-103. https://doi.org/10.1016/j.jsg.2017.02.015

Ortner, H., Reiter, F., & Acs, P. (2002). Easy handling of tectonic data: The programs TectonicVB for Mac and TectonicsFP for Windows™. Computers & Geosciences, 28(10), 1193- 1200. https://doi.org/10.1016/s0098-3004(02)00038-9

Passchier, C. W., & Trouw, R. A. J. (2005). Microtectonics. Springer Science and Business Media. https://doi.org/10.1007/3-540-29359-0

Passchier, C. W., & Coelho, S. (2006). An outline of shear-sense analysis in high-grade. Gondwana Research, 10(1-2), 66-76. https://doi.org/10.1016/j.gr.2005.11.016

Passchier, C. W., Myers, J. S., & Kröner, A. (1990). Field geology of high-grade gneiss terrains. Springer-Verlag. https://doi.org/10.1007/978-3-642-76013-6

Petit, J. P. (1987). Criteria for the sense of movement on fault surfaces in brittle rocks. Journal of Structural Geology, 9(5- 6), 597-608. https://doi.org/10.1016/0191-8141(87)90145-3

Petit, J. P., Proust, F., & Tapponnier, P. (1983). Critèriesde sens de movement sur les miroirs de failles en roches non calcaires. Bulletin de la Société Ggéologique de France, XXV(4), 589-608. https://doi.org/10.2113/gssgfbull.S7-XXV.4.589

Phillips, F. C. (1973). La aplicación de la proyección estereográfica en geología estructural. Trans.: C. M. Escorza (1975). Blume.

Potter, P. E., & Pettijohn, F. J. (1963). Statistics of directional data. Academic Press.

Price, N. J., & Cosgrove, J. W. (1990). Analysis of geological structures. Cambridge University Press.

Ragan, D. M. (2009). Structural geology: An introduction to geometrical techniques. Cambridge University Press.

Rajasekhar, M., Sudarsana R., G., Siddi R., R., Ramachandra, M., & Pradeep K., B. (2018). Data on comparative studies of lineaments extraction from ASTER DEM, SRTM, and Cartosat for Jilledubanderu River basin, Anantapur district, A. P, India by using remote sensing and GIS. Data in Brief, 20, 1676-1682. https://doi.org/10.1016/j.dib.2018.09.023

Ramsay, J. G. (1967). Folding and fracturing of rocks. McGraw-Hill Book Company.

Roberts, J. L. (1982). Introduction to geological maps and structures. Pergamon Press.

Robson, R. M. (1994). A multi-component rose diagram. Journal of Structural Geology, 16(7), 1039-1040. https://doi.org/10.1016/0191-8141(94)90086-8

Sander, B. X. (1911). Über Zusammenhänge zwischen Teilbewegung und Gefüge in Gesteinen. Tschermaks Mineralogische und Petrographische Mitteilungen, 30, 281-314. https://doi.org/10.1007/BF02994467

Sander, B. (1970). An introduction to the study of fabrics of geological bodies. Pergamon Press.

Sanderson, D. J., & Peacock, D. C. P. (2020). Making rose diagrams fit-for-purpose. Earth-Science Reviews, 201, 103055. https://doi.org/10.1016/j.earscirev.2019.103055

Simpson, C., & Schmid, S. M. (1983). An evaluation of criteria to deduce the sense of movement in sheared rocks. GSA Bulletin, 94(11), 1281-1288. https://doi.org/10.1130/0016-7606(1983)94<1281:AEOCTD>2.0.CO;2

Singhal, B. B. S., & Gupta, R. P. (2010). Applied hydrogeology of fractured rocks. Springer. https://doi.org/10.1007/978-90-481-8799-7

Sugden, T. (1987). Kinematic indicators: Structures that record the sense of movement in mountain chains. Geology Today, 3(3-4), 93-99. https://doi.org/10.1111/j.1365-2451.1987.tb00496.x

Turner, F. J., & Weiss, L. E. (1963). Structural analysis of metamorphic tectonites. McGraw-Hill Book Company, Inc.

Twiss, R. J., & Moores, E. M. (2007). Structural geology. W. H. Freeman and Company.

Wilson, G. (1982). Introduction to small-scale geological structures. George Allen & Unwin. https://doi.org/10.1007/978-94-011-6838-0

Whitmeyer, S. J., Pyle, E. J., Pavlis, T. L., Swanger, W., & Roberts, L. (2019). Modern approaches to field data collection and mapping: Digital methods, crowdsourcing, and the future of statistical analyses. Journal of Structural Geology, 125, 29-40. https://doi.org/10.1016/j.jsg.2018.06.023

Van der Pluijm, B. A., & Marshak, S. (2004). Earth Structure: An introduction to structural geology and tectonics. W. W. Norton & Company.

Žalohar, J. (2020). T-Tecto Studio X5. Integrated software for structural analysis of earthquake focal-machanism and fault-slip data. Introductory tutorial. Quantectum.

Žalohar, J., & Vrabec, M. (2007). Paleostress analysis of heterogeneous fault-slip data: The Gauss method. Journal of Structural Geology, 29(11), 1798-1810. https://doi.org/10.1016/j.jsg.2007.06.009

Cómo citar
López Isaza, J. A., Cuéllar Cárdenas, M. A., Cetina Tarazona, L. M., Forero Ortega, A. J., Suárez Arias, A. M., Muñoz Rodríguez, O. F., Aguirre Hoyos, L. M., & Gutiérrez López, M. J. (2021). Graphical representation of structural data in the field: A methodological proposal for application in deformed areas. Boletín Geológico, 48(1), 123-139. https://doi.org/10.32685/0120-1425/bol.geol.48.1.2021.504

Descargas

La descarga de datos todavía no está disponible.
Publicado
2021-07-12
Cómo citar
López Isaza, J. A., Cuéllar Cárdenas, M. A., Cetina Tarazona, L. M., Forero Ortega, A. J., Suárez Arias, A. M., Muñoz Rodríguez, O. F., Aguirre Hoyos, L. M., & Gutiérrez López, M. J. (2021). Graphical representation of structural data in the field: A methodological proposal for application in deformed areas. Boletín Geológico, 48(1), 123-139. https://doi.org/10.32685/0120-1425/bol.geol.48.1.2021.504