Geological-structural mapping and geocronology of shear zones: A methodological proposal
DOI:
https://doi.org/10.32685/0120-1425/bol.geol.48.1.2021.524Keywords:
Shear zones, fault rocks, brittle regime, brittle-ductile transition, ductile regime, mapping, geochronologyDownloads
How to Cite
Issue
Section
Published
Abstract
The deformation registered in rocks in the field can be characterized based on the structures preserved in outcrops, which can related be to wide discontinuity zones named faults and shear zones. The geological-structural mapping and the geochronology of these tectonic structures are a topic of great interest not only for tectonic modeling but also for reconstruction of the geological evolution of the national territory. The methodology suggest for the analysis of faults and shear zones is based on eight steps, including: 1) definition of the geological context in which the structure was developed; 2) photointerpretation, image geoprocessing, and geological-structural mapping of the structural and lithological characteristics of the faults and shear zones; 3) petrographic analysis of field-oriented samples; 4) quantification of strain orientation and geometry through 3D finite strain analyses and quantification of non-coaxiliaty of deformation through vorticity analyses; 5) SEM-TEM-EBSD microanalysis; 6) quantification of the P-T conditions of deformation through phase-equilibria modeling or conventional geothermobarometry; 7) dating of syn-kinematic minerals phases and mylonitic rocks through Ar-Ar analyses, in order to determine the reactivation and deformation ages of the structure, respectively, as well as the implementation of the U-Pb technique in syn-kinematic calcite crystals developed in the fault planes; and 8) dating of geological elements adjacent to the structure, such as syn-kinematic intrusive bodies associated with the deformation event using zircon U-Pb dating, rocks hydrothermally altered through Ar-Ar method, and zircon and apatite fission-tracks dating of the blocks adjacent to the faults for determining exhumation ages.
References
Abbey, A. L., & Niemi, N. A. (2018). Low-temperature thermochronometric constraints on fault initiation and growth in the northern Rio Grande rift, upper Arkansas River valley, Colorado, USA. Geology, 46(7), 627-630. https://doi.org/10.1130/G40232.1
Aitken, A. R. A., & Betts, P. G. (2009). Multi-scale integrated structural and aeromagnetic analysis to guide tectonic models: An example from the eastern Musgrave Province, Central Australia. Tectonophysics, 476(3-4), 418-435. https://doi.org/10.1016/j.tecto.2009.07.007
Altenberger, U., & López I., J. A. (2014). Evidence of frictional melts in weak carbonate rocks: Examples from the Cuisa Fault, alta Guajira/Northern Colombia. Geologi´a Colombiana, 37, 5-14.
Amaya-Ferreira, S., Zuluaga, C. A., & Bernet, M. (2020). Different levels of exhumation across the Bucaramanga Fault in the Cepitá area of the southwestern Santander Massif, Colombia: Implications for the tectonic evolution of the northern Andes in northwestern South America. In J. Gómez & D. Mateus Zabala (eds.), The geology of Colombia. Vol. 3: Paleogene-Neogene. Publicaciones Geológicas Especiales, 37. Servicio Geológico Colombiano. https://doi.org/10.32685/pub.esp.37.2019.17
Anderson, L. J., Osborne, R. H., & Palmer, D. F. (1993). Cataclastic rocks of the San Gabriel Fault: An expression of deformation at deeper crustal levels in the San Andreas fault zones. Tectonophysics, 98(3-4), 209-251. https://doi.org/10.1016/0040-1951(83)90296-2
Angelier, J. (1979). Determination of the mean principal directions of stresses for a given fault population. Tectonophysics, 56(3-4), 17-26. https://doi.org/10.1016/0040-1951 (79)90081-7
Angelier, J. (1994). Fault slip analysis and palaeostress reconstruction. In P. L. Hancock (ed.), Continental deformation (pp. 53-100). Pergamon Press.
Angelier, J. T., & Mechler, P. (1977). Sur une méthode graphique de recherche des contraintes principales également utilisables en tectonique et en séismologie: La méthode des dièdres droits. Bulletin de la Société Géologique de France, 7(6), 1309-1318.
Angiboust, S., Kirsch, J., Oncken, O., Glodny, J., Monié, P., & Rybacki, E. (2015). Probing the transition between seismically coupled and decoupled segments along an ancient subduction interface. Geochemistry, Geophysics, Geosystems, 16(6), 1905-1922. https://doi.org/10.1002/2015GC005776
Armit, R. J., Ailleres, L., Betts, P. G., Schaefer, B. F., & Blaikie, T. N. (2014). High-heat geodynamic setting during the Paleozoic evolution of the Mount Painter Province, SA, Australia: Evidence from combined field structural geology and potential-field inversions. Geophysical Journal International, 199(1), 253-275. https://doi.org/10.1093/gji/ggu263
Ault, A. K. (2020). Hematite fault rock thermochronometry and textures inform fault zone processes. Journal of Structural Geology, 133, 104002. https://doi.org/10.1016/j.jsg.2020.104002
Ault, A. K., Frenzel, M., Reiners, P. W., Woodcock, N. H., & Thomson, S. N. (2016). Record of paleofluid circulation in faults revealed by hematite (U-Th)/He and apatite fission-track dating: An example from Gower Peninsula fault fissures, Wales. Lithosphere, 8(4), 379-385. https://doi.org/10.1130/L522.1
Ault, A. K., Reiners, P. W., Evans, J. P., & Thomson, S. N. (2015). Linking hematite (U-Th)/He Utah, USA. Geology, 43(9), 771-774. https://doi.org/10.1130/G36897.1
Ávila, C., Archanjo, C., Fossen, H., & Hollanda, M. H. (2019). Zippered shear zone model for interacting shear zones in the Borborema Province, Brazil, as constrained by U-Pb dating. Tectonics, 38(10). https://doi.org/10.1029/2019TC005547
Babaie, H. A., Babaei, A., & Hadizadeh, J. (1991). Initiation of cataclastic flow and development of cataclastic foliation in nonporous quartzites from a natural fault zone. Tectonophysics, 200(1-3), 67-77. https://doi.org/10.1016/0040-1951(91)90006-e
Babaie, H. A., & La Tour, T. E. (1993). Semibrittle and cataclastic deformation of hornblende-quartz rocks in a ductile shear zone. Tectonophysics, 229(1-2), 19-30. https://doi.org/10.1016/0040-1951(94)90003-5
Balsamo, F., Storti, F., Salvini, F., Silva, A. T., & Lima, C. C. (2010). Structural and petrophysical evolution of extensional fault zones in low-porosity, poorly lithified sandstones of the Barreiras Formation, NE Brazil. Journal of Structural Geology, 32(11), 1806-1826. https://doi.org/10.1016/j.jsg.2009.10.010
Barão, L. M., Trzaskos, B., Angulo, R. J., & De Souza, M. C. (2018). Análise qualitative fractal das estruturas nas Ilhas Belmonte e Challenger e sua relação com a estruturação local: Arquipélago de São Pedro e São Paulo. In J. E. Lins Oliveira, D. de L. Viana, M. A. Carvalho de Sousa (eds.), Arquipélago de São Pedro e São Paulo: 20 anos de pesquisa (pp. 221-224). Via Design Publicações.
Barão, L. M., Trzaskos, B., Angulo, R. J., & De Souza, M. C. (2020). Deformation and structural evolution of mantle peridotites during exhumation on transform faults: A forced transition from ductile to brittle regime. Journal of Structural Geology, 133, 103981. https://doi.org/10.1016/j.jsg.2020.103981
Barker, S. L. L., Cox, S. F., Eggins, S. M., & Gagan, M. K. (2006). Microchemical evidence for episodic growth of antitaxial veins during fracture-controlled fluid flow. Earth and Planetary Science Letters, 250(1-2), 331-344. https://doi.org/10.1016/j.epsl.2006.07.051
Bastesen, E., & Braathen, A. (2010). Extensional faults in fine grained carbonates: Analysis of fault core lithology and thickness-displacement relationships. Journal of Structural Geology, 32(11), 1609-1628. https://doi.org/10.1016/j.jsg.2010.09.008
Beach, A., Welbon, A. I., Brockbank, P. J., & McCallum, J. E. (1999). Reservoir damage around faults: Outcrop examples from the Suez Rift. Petroleum Geoscience, 5(2), 109-116. https://doi.org/10.1144/petgeo.5.2.109
Beam, E. C., & Fisher, D. M. (1999). An estimate of kinematic vorticity from rotated elongate porphyroblasts. Journal of Structural Geology, 21(11), 1553-1559. https://doi.org/10.1016/S0191-8141(99)00110-8
Beaudoin, N., Lacombe, O., Roberts, N. M., & Koehn, D. (2018). U-Pb dating of calcite veins reveals complex stress evolution and thrust sequence in the Bighorn Basin, Wyoming, USA. Geology, 46(11), 1015-1018. https://doi.org/10.1130/G45379.1
Behrmann, J. H., & Mainprice, D. (1987). Deformation mechanisms in a high-temperature quartz-feldspar mylonite: Evidence for superplastic flow in the lower continental crust. Tectonophysics, 140(2-4), 297-305. https://doi.org/10.1016/0040-1951(87)90236-8
Bell, T. H., & Etheridge, M. A. (1973). Microstructure of mylonites and their descriptive terminology. Lithos, 6(4), 337-348. https://doi.org/10.1016/0024-4937(73)90052-2
Bella, B. E. N., Njanko, T., & Tchakounte, J. (2019). CPO and kinematic analysis of the Bitou S-tectonites (Central Camerrom shear zone): AMS and EBSD investigations. Journal of Earth System Science, 128(231), 1-14. https://doi.org/10.1007/s12040-019-1264-9
Bense, F. A., Wemmer, K., Löbens, S., & Siegesmund, S. (2014). Fault gouge analyses: K-Ar illite dating, clay mineralogy and tectonic significance: a study from the Sierras Pampeanas, Argentina. International Journal of Earth Sciences, 103, 189-218. https://doi.org/10.1007/s00531-013-0956-7
Berg, S. S., & Skar, T. (2005). Controls on damage zone asymmetry of a normal fault zone: Outcrop analyses of a segment of the Moab fault, SE Utah. Journal of Structural Geology, 27(10), 1803-1822. https://doi.org/10.1016/j.jsg.2005.04.012
Bergemann, C. A., Gnos, E., Berger, A., Whitehouse, M. J., Mullis, J., Wehrens, P., Pettke, T., & Janots, E. (2017). Th-Pb ion probe dating of zoned hydrothermal monazite and its implications for repeated shear zone activity: An example from the Central Alps, Switzerland. Tectonics, 36(4), 671-689. https://doi.org/10.1002/2016TC004407
Bergemann, C. A., Gnos, E., Berger, A., Whitehouse, M. J., Mullis, J., Walter, F., & Bojar, H. P. (2018). Constraining long-term fault activity in the brittle domain through in situ dating of hydrothermal monazite. Terra Nova, 30(6), 440-446. https://doi.org/10.1111/ter.12360
Bernet, M., Brandon, M. T., Garver, J. I., Reiners, P. W., & Fitzgerald, P. G. (2002). Determining the zircon fission-track closure temperature. GSA Cordilleran Section, 98th annual meeting, Abstract with Programs (34), 18.
Bernet, M., Piraquive, A., Urueña, C., López-Isaza, J., Bermúdez, M., Zuluaga, C., Amaya, S., & Villamizar, N. (2019). Multidisciplinary petro-geo-thermochronological approach to ore deposit exploration. Ore Geology Reviews, 112, 103017. https://doi.org/10.1016/j.oregeorev.2019.103017
Betts, P. G., Valenta, R. K., & Finlay, J. (2003). Evolution of the Mount Woods Inlier, northern Gawler Craton, Southern Australia: An integrated structural and aeromagnetic analysis. Tectonophysics, 366(1-2), 83-111. https://doi.org/10.1016/S0040-1951(03)00062-3
Bidgoli, T. S., Stockli, D. F., & Walker, J. D. (2015). Low-temperature thermochronologic constraints on the kinematic histories of the Castle Cliffs, Tule Springs, and Mormon Peak detachments, southwestern Utah and southeastern Nevada. Geosphere, 11(3), 850-867. https://doi.org/10.1130/GES01083.1
Billi, A., Salvini, F., & Storti, F. (2003). The damage zone-fault core transition in carbonate rocks: Implications for fault growth, structure and permeability. Journal of Structural Geology, 25(11), 1779-1794. https://doi.org/10.1016/S0191-8141(03)00037-3
Blackburn, T. J., Stockli, D. F., & Walker, J. D. (2007). Magnetite (U-Th)/He dating and its application to the geochronology of intermediate to mafic volcanic rocks. Earth and Planetary Science Letters, 259(3-4), 360-371. https://doi.org/10.1016/j.epsl.2007.04.044
Blaikie, T. N., Ailleres, L., Betts, P. G., & Cas, R. A. F. (2014). Interpreting subsurface volcanic structures using geologically constrained 3-D gravity inversions: Examples of maar-diatremes, Newer Volcanics Province, southeastern Australia. Journal of Geophysical Research: Solid Earth, 119(4), 3857-3878. https://doi.org/10.1002/2013JB010751
Blaikie, T. N., Betts, P. G., Armit, R. J., & Ailleres, L. (2017). The ca. 1740-1710 Ma Leichhardt Event: Inversion of a continental rift and revision of the tectonic evolution of the North Australian Craton. Precambrian Research, 292, 75-92. https://doi.org/10.1016/j.precamres.2017.02.003
Blenkinsop, T. (2002). Deformation microstructures and mechanism in mineral and rocks. Klewer Academic Publishers.
Blenkinsop, T., & Rutter, E. (1986). Cataclastic deformation of quartzite in the moine thrust zone. Journal of Structural Geology, 8(6), 669-681. https://doi.org/10.1016/0191-8141(86)90072-6
Blumenfeld, P., & Bouchez, J. L. (1988). Shear criteria in granite and migmatite deformed in the magmatic and solid states. Journal of Structural Geology, 10(4), 361-312. https://doi.org/https://doi.org/10.1016/0191-8141(88)90014-4
Bohlen, S. R., & Lindsley, D. H. (1987). Thermobarometry and barometry of igneous and metamorphic rocks. Annual Reviews in Earth and Planetary Sciences, 15, 397-420.
Bonamici, C. E., Fanning, C. M., Kozdon, R., Fournelle, J. H., & Valley, J. W. (2015). Combined oxygen-isotope and U-Pb zoning studies of titanite: New criteria for age preservation. Chemical Geology, 398, 70-84. https://doi.org/10.1016/j.chemgeo.2015.02.002
Bonamici, C. E., Kozdon, R., Ushikubo, T., & Valley, J. W. (2014). Intragrain oxygen isotope zoning in titanite by SIMS: Cooling rates and fluid infiltration along the CarthageColton Mylonite Zone, Adirondack Mountains, NY, USA. Journal of Metamorphic Geology, 32(1), 71-92. https://doi.org/10.1111/jmg.12059
Borradaile, G. J., & Werner, T. (1994). Magnetic anisotropy of some phyllosilicates. Tectonophysics, 235(3), 223-248. https://doi.org/10.1016/0040-1951(94)90196-1
Bossi, J., & Campal, N. (1992). Magmatismo y tectónica transcurrente durante el Paleozoico inferior del Uruguay. In J. Gutiérrez, J. Saavedr, & I. Rábano (eds.), Paleozoico Inferior de Ibero-América (pp. 343-356). Universidad de Extremadura, Alicante.
Bott, M. (1959). The mechanics of oblique slip faulting. Geological Magazine, 96(2), 109. https://doi.org/10.1017/S0016756800059987
Bouchez, J. L., Delas, C., Gleizes, G., & Nédélec, A. (1992) Submagmatic microfractures in granites. Geology, 20(1), 35-38. https://doi.org/10.1130/0091-7613(1992)020<0035:SMIG>2.3.CO;2
Brandon, M. T., & Vance, J. A. (1992). Tectonic evolution of the Cenozoic Olympic subduction complex, Washington State, as deduced from fission track ages for detrital zircons. American Journal of Science, 292(8), 565-636.
Brodie, K., Fettes, D., Harte, B., & Schmid, R. (2007). Structural terms including fault rock terms. From IUGS Subcomission on the Systematics of Metamorphic Rocks (SCMR).
Brown, M., & Solar, G. S. (1998). Shear-zone systems and melts: Feedback relations and self-organization in orogenic belts. Journal of Structural Geology, 20(2-3), 211-227. https://doi.org/10.1016/S0191-8141(97)00068-0
Brown, M., & Solar, G. S. (1999). The mechanism of ascent and emplacement of granite magma during transpression: A syntectonic paradigm. Tectonophysics, 312(1), 1-33. https://doi.org/10.1016/S0040-1951(99)00169-9
Bull, W. B. (2007). Tectonic geomorphology of mountains: A new approach to paleoseismology. Blackwell Publishing. https://doi.org/10.1016/S0040-1951(99)00169-9
Burkhard, M. (1993). Calcite twin, their geometry, appearance and significance as strain-stress markers and indicators of tectonic regime: A review. Journal of Structural Geology, 15(3-5), 351-368. https://doi.org/10.1016/0191-8141(93)90132-T
Burrbank, D. W., & Anderson, R. S. (2011). Tectonic geomorphology (2nd ed.). Wiley-Blackwell.
Caine, J. S., Coates, D. R., Timoffeef, N. P., & Davis, W. D. (1991). Hydrogeology of the Northern Shawangunk Mountains. New York State Open-File Report 1, 806.
Caine, J. S., Evans, J. P., & Forster, C. B. (1996). Fault zone architecture and permeability structure. Geology, 24(11), 1025-1028. https://doi.org/10.1130/0091-7613(1996)024<1025:FZAAPS>2.3.CO;2
Calzolari, G., Rossetti, F., Ault, A. K., Lucci, F., Olivetti, V., & Nozaem, R. (2018). Hematite (U-Th)/He thermochronometry constrains strike-slip faulting on the Kuh-e-Faghan fault, central Iran. Tectonophysics, 728-729, 41-54. https://doi.org/10.1016/j.tecto.2018.01.023
Cao, S., Neubauer, F., Liu, J., Bernroider, M., Cheng, X., Li, J., Yu, Z., & Genser, J. (2017). Rheological weakening of high-grade mylonites during low-temperature retrogression: The exhumed continental Ailao Shan-Red River fault zone, SE Asia. Journal of Earth Sciences, 139, 40-60. https://doi.org/10.1016/j.jseaes.2016.10.002
Carreras, J., Cosgrove, J. W., & Druguet, E. (2013). Strain partitioning in banded and/or anisotropic rocks: Implications for inferring tectonic regimes. Journal of Structural Geology, 50, 7-21. https://doi.org/10.1016/j.jsg.2012.12.003
Casas, A., Peña, I., & Simón, J. (1990). Los métodos de análisis de paleoesfuerzos a partir de poblaciones de fallas: Sistemática y técnicas de aplicación. Estudios Geológicos, 46(5-6), 385-398. https://doi.org/10.3989/egeol.90465-6469
Cassata, W. S., Renne, P. R., & Shuster, D. L. (2009). Argon diffusion in plagioclase and implications for thermochronometry: A case of study from the Bushveld Complex, South Africa. Geochimica et Cosmochimica Acta, 73(21), 6600-6612. https://doi.org/10.1016/j.gca.2009.07.017
Cavalcante, C., Lagoeiro, L., Fossen, H., Egydio Silva, M., Morales, L. F. G., Ferrerira, F., & Conte, T. (2018). Temperature constraints on microfabric patterns in quartzofeldsphatic mylonites, Ribeira belt (SE Brazi). Journal of Structural Geology, 115, 243-262. https://doi.org/10.1016/j.jsg.2018.07.013
Célérier, B. (1988). How much does slip on a reactived fault plane constrain the stress tensor? Tectonics, 7(6), 1257-1278. https://doi.org/10.1029/TC007i006p01257
Cello, G. (1997). Fractal analysis of a Quaternary fault array in the central Apennines, Italy. Journal of Structural Geology, 19(7), 945-953. https://doi.org/10.1016/s0191-8141(97)00024-2
Chan, Y.-C., Crespi, J. M., & Hodges, K. V. (2000). Dating cleavage formation in slates and phyllites with the 40Ar/39Ar laser microprobe: An example from the western New England Appalachians, USA. Terra Nova, 12(6), 264-271. https://doi.org/10.1046/j.1365-3121.2000.00308.x
Chen, C.-L., & Thomson, R. C. (2010). The combined use of EBSD and EDX analyses for the identification of complex intermetallic phases in multicomponent Al-Si piston alloys. Journal of Alloys and Compounds, 490(1-2), 293-300. https://doi.org/10.1016/j.jallcom.2009.09.181
Chen, R.-F., Lin, C.-W., Chen, Y.-H., He, T.-C., & Fei, L.-Y. (2015). Detecting and characterizing active thrust fault and deep-seated landslides in dense forest areas of southern Taiwan using airborne LiDAR DEM. Remote Sensing, 7(11), 15443-15466. https://doi.org/10.3390/rs71115443
Cherniak, D. J. (1995). Diffusion of lead in plagioclase and K-feldspar: An investigation using Rutherford backscattering and resonant nuclear reaction analysis. Contributions to Mineralogy and Petrology, 120, 358-371. https://doi.org/10.1007/BF00306513
Cherniak, D. J., & Watson, E. B. (2000). Pb diffusion in zircon. Chemical Geology, 172(1-2), 5-24. https://doi.org/10.1016/S0009-2541(00)00233-3
Cherniak, D. J., Watson, E. B., Grove, M., & Harrison, T. M. (2004). Pb diffusion in monazite: A combined RBS/SIMS study. Geochimica et Cosmochimica Acta, 68(4), 829-840. https://doi.org/10.1016/j.gca.2003.07.012
Chester, F. M., & Chester, J. S. (1998). Ultracataclasite structure and friction processes of the Punchbowl fault, San Andreas system, California. Tectonophysics 295(1-2), 199-221. https://doi.org/10.1016/S0040-1951(98)00121-8
Chester, F. M., Chester, J. S., Kirschner, D. L., Schulz, S. E., & Evans, J. P. (2004). Structure of large-displacement, strike-slip fault zones in the brittle continental crust. In G. D. Karner, B. Taylor, N. W. Driscoll, & D. L. Kohlstedt (eds.), Rheology and deformation in the lithosphere at continental margins. Columbia University Press.
Chester, F. M., Evans, J. P., & Biegel, R. L. (1993). Internal structure and weakening mechanisms of the San Andreas fault. Journal of Geophysical Research, 98(B1), 771-786. https://doi.org/10.1029/92JB01866
Chester, F. M., Friedman, M., & Logan, J. M. (1985). Foliated cataclasites. Tectonophysics, 111(1-2), 139-146. https://doi.org/10.1016/0040-1951(85)90071-X
Chester, F. M., & Logan, J. M. (1986). Composite planar fabric of gouge from the Punchbowl fault zone, California. Journal of Structural Geology, 9(5-6), 621-634. https://doi.org/10.1016/0191-8141(87)90147-7
Chetty, T. R. K. (2014). Deep crustal shear zones in the Eastern Ghats Mobile Belt, India: Gondwana correlations. The Journal Indian Geophysical Union, 18(1), 19-56.
Childs, C., Nicol, A., Walsh, J. J., & Watterson, J. (1996). Growth of vertically segmented normal faults. Journal of Structural Geology, 18(12), 1389-1397. https://doi.org/10.1016/S0191-8141(96)00060-0
Choi, J., Edwards, P., Ko, K., & Kim, Y. (2016). Definition and classification of fault damage zones: A review and a new methodological approach. Earth-Science Reviews, 152, 70-87. https://doi.org/10.1016/j.earscirev.2015.11.006
Clemens, J. D., & Mawer, C. K. (1992). Granitic magma transport by fracture propagation. Tectonophysics, 204(3-4), 339-360. https://doi.org/10.1016/0040-1951(92)90316-X
Clerc, C., Jolivet, L., & Ringenbach, J.-C. (2015). Ductile extensional shear zones in the lower crust of a passive margin. Earth and Planetary Science Letters, 431, 1-7. https://doi.org/10.1016/j.epsl.2015.08.038
Cocherie, A., Be Mezeme, E., Legendre, O., Fanning, C. M., Faure, M., & Rossi, P. (2005). Electron-microprobe dating as a tool for determining the closure of Th-U-Pb systems in migmatitic monazites. American Mineralogist, 90(4), 607-618. https://doi.org/10.2138/am.2005.1303
Colgan, J. P., Shuster, D. L., & Reiners, P. W. (2008). Two-phase Neogene extension in the northwestern basin and range recorded in a single thermochronology sample. Geology, 36(8), 631-634. https://doi.org/10.1130/G24897A.1
Collett, C. M., Duvall, A. R., Flowers, R. M., Tucker, G. E., & Upton, P. (2019). The timing and style of oblique deformation within New Zealand’s Kaikoura ranges and Marlborough fault system based on low-temperature thermochronology. Tectonics, 38(4), 1250-1272. https://doi.org/10.1029/2018TC005268
Conte, T., Cavalcante, C., Lagoeiro, L. E., Fossen, H., & Silveira, C. S. (2020). Quartz textural analysis from an anastomosing shear zone system: Implications for the tectonic evolution of the Ribeira belt, Brazil. Journal of South American Earth Sciences, 103, 102750. https://doi.org/10.1016/j.jsames.2020.102750
Connolly, J. A. D. (2005). Computation of phase equilibria by linear programming: A tool for geodynamic modeling and its application to subduction zone decarbonation. Earth and Planetary Science Letters, 236(1-2), 524-541. https://doi.org/10.1016/j.epsl.2005.04.033
Connolly, J. A. D. (2009). The geodynamic equation of state: What and how. Geochemistry, Geophysics, Geosystems, 10(10). https://doi.org/10.1029/2009GC002540
Cooperdock, E. H., & Stockli, D. F. (2016). Unraveling alterations histories in serpentinites and associated ultramafic rocks with magnetite (U-Th)/He geochronology. Geology, 44(11), 967-970. https://doi.org/10.1130/G38587.1
Cosca, M., St?nitz, H., Bourgeix, A.-L., & Lee, J. P. (2011). Ar* loss in experimentally deformed muscovite and biotite with implications for 40Ar/39Ar geochronology of naturally deformed rocks. Geochimica et Cosmochimica Acta, 75(24), 7759-7778. https://doi.org/10.1016/j.gca.2011.10.012
Cosca, M. A., Caby, P., & Bussya, F. (2005). Geochemistry and 40Ar/39Ar geochronology of pseudotachylite associated with UHP whiteschists from the Dora Maira massif, Italy. Tectonophysics, 402(1-2), 93-110. https://doi.org/10.1016/j.tecto.2004.12.033
Cox, S. F., Knackstedt, M. A., & Braun, J. (2001). Principles of structural control on permeability and fluid flow in hydrothermal systems. In J. P. Richards, & R. M. Tosdal (eds.), Reviews in Economic Geology, vol. 14, Structural controls on ore genesis. Society of Economic Geologists. https://doi.org/10.5382/Rev.14.01
Crone, A. J., & Omdahl, E. M. (1987). Directions in Paleoseismology. U. S. Geological Survey, New Mexico.
Cross, A. J., Kidder, S., & Prior, D. J. (2015). Using microstructures and TitaniQ thermobarometry of quartz sheared around garnet porphyroclasts to evaluate microstructural evolution and constrain an Alpine fault zone geotherm. Journal of Structural Geology, 75, 17-31. https://doi.org/10.1016/j.jsg.2015.02.012
Curry, M. A. E., Barnes, J. B., & Colgan, J. P. (2016). Testing fault growth models with low-temperature thermochronology in the northwest basin and range, USA. Tectonics, 35(10), 2467-2492. https://doi.org/10.1002/2016TC004211
D’Lemos, R. S., Brown, M., & Strachan R. A. (1992). Granite magma generation, ascent and emplacement with a transpresional orogen. Journal of the Geological Society, 149(4), 487-490. https://doi.org/10.1144/gsjgs.149.4.0487
Dahl, P. S. (1997). A crystal-chemical basis for Pb retention and fission-track annealing systematics in U-bearing minerals, with implications for geochronology. Earth and Planetary Science Letters, 150(3-4), 277-290. https://doi.org/10.1016/S0012-821X(97)00108-8
Dahl, P. S., Terry, M. P., Jercinovic, M. J., Williams, M. L., Hamilton, M. A., Foland, K. A., Clement, S. M., & Friberg, L. M. (2005). Electron probe (ultrachron) micronometry of metamorphic monazite: Unraveling the timing of polyphase thermotectonism in the easternmost Wyoming craton (Black Hills, South Dakota). American Mineralogist, 90(11-12), 1712-1728. https://doi.org/10.2138/am.2005.2002
Davids, C., Wemmer, K., Zwingmann, H., Kohlmann, F., Jacobs, J., & Bergh, S. G. (2013). K-Ar illite and apatite fission track constraints on brittle faulting and the evolution of the northern Norwegian passive margin. Tectonophysics, 608, 196-211. https://doi.org/10.1016/j.tecto.2013.09.035
Davis, G. H., & Reynolds, S. J. (1996). Structural Geology of Rocks and Regions (2nd ed.). Wiley.
Davis, G. H., Reynolds, S. J., & Kluth, C. F. (2011). Structural Geology of rocks and regions (3rd ed). Jhon Wiley & Sons, INC.
De Capitani, C., & Petrakakis, K. (2010). The computation of equilibrium assemblage diagrams with Theriak/Domino software. American Mineralogist, 95(7), 1006-1016. https://doi.org/10.2138/am.2010.3354
Delvaux, D. (2012). Release of program Win-Tensor 4.0 for tectonic stress inversión: statistical expression of stress parameters. EGU General Assembly, Vienna. Geophysical Research Abstracts, 14, EGU2012-5899.
Delvaux, D., Kervyn, F., Macheyeki, A. S., & Temu, E. B. (2012). Geodynamic significance of the TRM segment in the East African Rift (W-Tanzania): Active tectonics and paleostress in the Ufipa plateau and Rukwa basin. Journal of Structural Geology, 37, 161-180. https://doi.org/10.1016/j.jsg.2012.01.008
Delvaux, D., & Sperner, B. (2003). New aspects of tectonic stress inversion with reference to the Tensor program (pp. 75-100). Special Publications vol. 212. Geological Society of London. https://doi.org/10.1144/GSL.SP.2003.212.01.06
Desbois, G., Hemes, S., Laurich, B., Houben, M., Klaver, J., Hohne, N., Urai, J. L., VIggiani, G., & Bésuelle, P. (2016). Investigation of microstructures in naturally and experimentally deformed reference clay rocks using innovative methods in scanning electron microscopy. The Clay Minerals Society Workshop Lectures Series, 21(1), 1-14. https://doi.org/10.1346/CMS-WLS-21.1
Despaigne Díaz, A. I., & Cáceres, D. G. (2009). Las maclas de calcita en los metacarbonatos: Significado tectónico y su empleo para la determinación de temperaturas de deformación. Minería y Geología, 25(2), 1-31.
Dichiarante, A. M., Holdsworth, R. E., Dempsey, E. D., Selby, D., McCaffrey, K. J. W., Michie, U. M., Morgan, G., & Bonniface, J. (2016). New structural and Re-Os geochronological evidence constraining the age of faulting and associated mineralization in the Devonian Orcadian basin, Scotland. Journal of the Geological Society, 173(3), 457-473. https://doi.org/10.1144/jgs2015-118
Di Vincenzo, G., Rocchi, S., Rossetti, F., & Storti, F. (2004). 40Ar-39Ar dating of pseudotachylytes: the effect of clast-hosted extraneous argon in Cenozoic fault-generated friction melts from the West Antarctic Rift System. Earth and Planetary Science Letters, 223(3-4), 349-364. https://doi.org/10.1016/j.epsl.2004.04.042
Di Vincenzo, G., Rossetti, F., Viti, C., & Balsamo, F. (2013). Constraining the timing of fault reactivation: Eocene coseismic slip along a Late Ordovician ductile shear zone (northern Victoria Land, Antarctica). Geological Society of America Bulletin, 125(3-4), 609-624. https://doi.org/10.1130/B30670.1
Doblas, M. (1998). Slickenside kinematic indicators. Tectonophysics, 295(1-2), 187-197. https://doi.org/10.1016/S0040-1951(98)00120-6
Doblas, M., Mahecha, V., Hoyos, M., & López Ruiz, J. (1997). Slickenside and fault surface kinematic indicators on active normal faults of the Alpine Betic cordilleras, Granada, southern Spain. Journal of Structural Geology, 19(2), 159-170. https://doi.org/10.1016/S0191-8141(96)00086-7
Dressel, B. C., Chauvet, A., Trzaskos, B., Biondi, J. C., Bruguier, O., Monié, P., Villavona, S. N., & Newton, J. B. (2018). The Passa Três lode gold deposit (Paraná State, Brazil): An example of structurally-controlled mineralization formed during magmatic-hydrothermal transition and hosted within granite. Ore Geology Reviews, 102, 701-727. https://doi.org/10.1016/j.oregeorev.2018.09.007
Druguet, E., Carreras, J., & Mezger, J. E. (2018). Discussion on ‘Middle Jurassic shear zones at Cap de Creus (eastern Pyrenees, Spain): a record of pre-drift extension of the Piemonte-Ligurian Ocean?’ Journal of the Geological Society, London, 174, 289-300. Journal of the Geological Society, 175(1), 187-188. https://doi.org/10.1144/jgs2017-042
Druguet, E., & Hutton, D. (1998). Syntectonic anatexis and magmatism in a mid-crustal transpresional shear zone: An example from the Hercynian rocks of the eastern Pyrenees. Journal of Structural Geology, 20(7), 905-916. https://doi.org/10.1016/S0191-8141(98)00017-0
Duba, A. G., Durham, W. B., Handin, J. W., & Wang, H. F. (1990). The brittle-ductile transition in rocks. Geophysical Monograph Series 56. https://doi.org/10.1029/GM056
Dunlap, W. J. (1997). Neocrystallization or cooling? 40Ar/39Ar ages of white micas from low-grade mylonites. Chemical Geology, 143(3-4), 181-203. https://doi.org/10.1016/S0009-2541(97)00113-7
Duval, M. (2018). Sobre el potencial de la resonancia paramagnética electrónica como herramienta geocronológica en contextos geoarqueológicos: Un resumen de 30 años de investigación en la península ibérica. Boletín Geológico y Minero, 1129(1-2), 35-57. https://doi.org/10.21701/bolgeomin.129.1.002
Duval, M., Moreno, D., Shao, Q., Voinchet, P., Falguères, C., Bahain, J. J., García, T., García, J., & Martínez, K. (2011). Datación por ESR del yacimiento arqueológico del Pleistoceno inferior de Vallparadís (Terrassa, Cataluña, España). Trabajos de Prehistoria, 68(1), 7-24. https://doi.org/10.3989/tp.2011.11056
Duvall, A. R., Clark, M. K., Van del Plujim, B. A., & Li, C. (2011). Direct dating of Eocene reverse faulting in northeastern Tibet using Ar-dating of fault clays and low-temperature thermochronometry. Earth and Planetary Science Letters, 304(3-4), 520-526. https://doi.org/10.1016/j.epsl.2011.02.028
Eberlei, T., Habler, G., Wegner, W., Schuster, R., Körner, W., Thöni, M., & Abart, R. (2015). Rb/Sr isotopic and compositional retentivity of muscovite during deformation. Lithos, 227, 161-178. https://doi.org/10.1016/j.lithos.2015.04.007
Ehlers, T. A., & Farley, K. A. (2003). Apatite (U-Th)/He thermochronometry: Methods and applications to problems in tectonics and surface processes. Earth and Planetary Science Letters, 206(1-2), 1-14. https://doi.org/10.1016/S0012-821X(02)01069-5
Engelder, J. T. (1974). Cataclasis and the generation of fault gouge. GSA Bulletin, 85(10), 1515-1522. https://doi.org/10.1130/0016-7606(1974)85<1515:CATGOF>2.0.CO;2
Erickson, T. M., Pearce, M. A., Taylor, R. J. M., Timms, N. E., Clark, C., Reddy, S. M., & Buick, I. S. (2015). Deformed monazite yields high-temperature tectonic ages. Geology, 43(5), 383-386. https://doi.org/10.1130/G36533.1
Essene, E. J. (1989). The current status of thermobarometry in metamorphic rocks. In J. S. Daly, R. A. Cliff, & B. W. D. Yardley (eds.). Evolution of metamorphic belts (pp. 1-44.). Special Publication, vol. 43. Geological Society of London. https://doi.org/10.1144/GSL.SP.1989.043.01.02
Evenson, N. S., Reiners, P. W., Spencer, J., & Shuster, D. L. (2014). Hematite and Mn oxide (U-Th)/He dates from the Buckskin-Rawhide detachment system, western Arizona: Constraining the timing of mineralization and hematite (U-Th)/He systematics. American Journal of Science, 314(10), 1373-1435. https://doi.org/10.2475/10.2014.01
Faleiros, F. M., Campanha, G. A. C., Bello, R. M. S., & Fuzikawa, K. (2010). Quartz recrystallization regimes, c-axis texture transitions and fluid inclusion reequilibration in a prograde greenschist to amphibolite facies mylonite zone (Ribeira Shear Zone, SE Brazil). Tectonophysics, 485(1-4), 193-214. https://doi.org/10.1016/j.tecto.2009.12.014
Farley, K. A. (2000). Helium diffusion from apatite: General behavior as illustrated by Durango fluorapatite. Journal Geophysical Research, 105(B2), 2903-2914. https://doi.org/10.1029/1999JB900348
Farley, K. A., & Flowers, R. M. (2012). (U-Th)/Ne and multidomain (U-Th)/He systematics of a hydrothermal hematite from eastern Grand Canyon. Earth and Planetary Science Letters, 359-360, 131-140. https://doi.org/10.1016/j.epsl.2012.10.010
Farley, K. A., & McKeon, R. E. (2015). Radiometic dating and temperature history of banded iron formation-associated hematite, Gogebic iron range, Michigan, USA. Geology, 43(12), 1083-1086. https://doi.org/10.1130/G37190.1
Faulkner, D. R., Jackson, C. A. L., Lunn, R. J., Schlische, R. W., Shipton, Z. K., Wibberley, C. A. J., & Withjack, M. O. (2010). A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones. Journal Structural Geology, 32(11), 1557-1575. https://doi.org/10.1016/j.jsg.2010.06.009
Ferrill, D. A. (1991). Calcite twin widths and intensities as metamorphic indicators in natural low temperature deformation in limestone. Journal of Structural Geology, 13(6), 667-675. https://doi.org/10.1016/0191-8141(91)90029-I
Ferrill, D. A., Morris, A. P., Evans, M. A., Burkhard, M., Groshong, R. H., & Onasch, C. M. (2004). Calcite twin morphology: A low temperature deformation geothermometer. Journal of Structural Geology, 26(8), 1521-1529. https://doi.org/10.1016/j.jsg.2003.11.028
Fitz-Díaz, E., & van der Plujim, B. (2013). Fold dating: A new Ar/Ar illite dating application to constrain the age of deformation in shallow crustal rocks. Journal of Structural Geology, 54, 174-179. https://doi.org/10.1016/j.jsg.2013.05.011
Flinn, D. (1979). The deformation matrix and the deformation ellipsoid. Journal of Structural Geology, 1(4), 299-307. https://doi.org/10.1016/0191-8141(79)90004-X
Forero-Ortega, A. J., Campanha, G. A. C., Faleiros, F. M., & Yogi, M. T. A. G. (2020). Pure shear-dominated transpression and vertical extrusion in a strike-slip fault splay from the Itapirapuã Shear Zone, Ribeira Belt, Brazil. Tectonophysics, 786, 228455. https://doi.org/10.1016/j.tecto.2020.228455
Fossen, H. (2013). Structural geology. Cambridge University Press.
Fossen, H., & Cavalcante, G. C. G. (2017). Shear zones: A review. Earth-Science Reviews, 171, 434-455. https://doi.org/10.1016/j.earscirev.2017.05.002
Fossen, H., & Dunlap, W. J. (1998). Timing and kinematics of Caledonian thrusting and extensional collapse, southern Norway: evidence from 40Ar/39Ar thermochronology. Journal of Structural Geology, 20(6), 765-781. https://doi.org/10.1016/S0191-8141(98)00007-8
Fossen, H., & Tikoff, B. (1997). Forward modeling of non-steady-state deformations and the “minimum strain path”. Journal of Structural Geology, 19(7), 987-996. https://doi.org/10.1016/S0191-8141(97)00021-7
Freeman, S. B., Butler, R. W. H., Cliff, R. A., & Rex, D. C. (1998). Direct dating of mylonite evolution: A multi-disciplinary geochronological study from the Moine thrust zone, NW Scotland. Journal of the Geological Society, 155(5), 745-758. https://doi.org/10.1144/gsjgs.155.5.0745
Fry, N. (2001). Stress space: Striated fault, deformation twins and their constraints on paleostress. Journal of Structural Geology, 23(1), 1-9. https://doi.org/10.1016/S0191-8141(00)00136-X
Gabrielsen, R. H., & Braathen, A. (2014). Models of fracture lineaments: Joints swarms, fracture corridor and faults in crystalline rocks, and their generic relations. Tectonophysics, 628, 26-44. https://doi.org/10.1016/j.tecto.2014.04.022
Gabrielsen, R. H., Braathen, A., & Ganerød, M. (2008). A reactivated fault system of southern Norway: How far east did the Mesozoic extension reach? International Geological Congress, Oslo, 4-15 August. Key note lecture, 33.
Gannouni, S., & Gabtni, H. (2015). Structural interpretation of lineaments by satellite image processing (Landsat TM) in the region of Zahret Medien (Northern Tunisia). Journal of Geographic Information System, 7(2), 119-127. https://doi.org/10.4236/jgis.2015.72011
García, D. A. C. (2011). Caracterización de la deformación y metamorfismo de los esquistos de Sabaletas, parte norte de la cordillera Central de Colombia (Master thesis). Universidad Nacional de Colombia, Medellín.
García, V. H., Reiners, P. W., Shuster, D. L., Idleman, B. D., & Zeitler, P. K. (2018). Thermochronology of sandstone-hosted secondary Fe-and Mn-oxides near Moab, Utah: Record of paleo-fluid flow along a fault. GSA Bulletin, 130(1-2), 93-113. https://doi.org/10.1130/B31627.1
Giraldo, S. J., Trouw, R. A. J., Duffles, P., Vinagre, R., Mejía, M. I., & Marimon, R. S. (2019). Structural analysis combined with new geothermobarometric and geochronological results of the Além Paraíba shear zone, between Três Rios and Bananal, Ribeira Orogen, SE Brazil. Journal of South American Earth Sciences, 90, 118-136. https://doi.org/10.1016/j.jsames.2018.11.018
Goodfellow, B. W., Viola, G., Bingen, B., Nuriel, P., & Kylander Clark, A. R. (2017). Paleocene faulting in SE Sweden from U-Pb dating of slickenfibre calcite, Terra Nova, 29(5), 321-328, 2017. https://doi.org/10.1111/ter.12280
Gorynski, K. E., Walker, J. D., Stockli, D. F., & Sabin, A. (2014). Apatite (U-Th)/He thermochronometry as an innovative geothermal exploration tool: A case study from the southern Wassuk range, Nevada. Journal of Volcanology and Geothermal Research, 270, 99-114. https://doi.org/10.1016/j.jvolgeores.2013.11.018
Goswami, S., Mamtani, M. A., & Rana, V. (2018). Quartz CPO and kinematic analysis in deformed rocks devoid of visible stretching lineations: An integrated AMS and EBSD investigation. Journal of Structural Geology, 115, 270-283. https://doi.org/10.1016/j.jsg.2018.04.008
Grauch, V., & Hudson, M. R. (2007). Guides to understanding the aeromagnetic expression of faults in sedimentary basins: Lessons learned from the central Rio Grande rift, New Mexico. Geophere, 3(6), 596-623. https://doi.org/10.1130/GES00128.1
Grégoire, V., Nédélec, A., Monié, P., Montel, J.-M., Ganne, J., & Ralison, B. (2009). Structural reworking and heat transfer related to the late-Panafrican Angavo shear zone of Madagascar. Tectonophysics, 477(3-4), 197-216. https://doi.org/10.1016/j.tecto.2009.03.009
Grocott, J., & Taylor, G. K. (2002). Magmatic arc fault systems, deformation partitioning and emplacement of granitic complexes in the Coastal Cordillera, north Chilean Andes (25° 30’ S to 27°00’ S). Journal of the Geological Society, 159(4), 425-442. https://doi.org/10.1144/0016-764901-124
Grujic, D., Stipp, M., & Wooden, J. L. (2011). Thermometry of quartz mylonites: Importance of dynamic recrystallization on Ti-in-quartz reequilibration. Geochemistry, Geophysics, Geosystems, 12(6), Q06012. https://doi.org/10.1029/2010GC003368
Grün, R. (1989). Electron spin resonance (ESR) dating. Quaternary International, 1, 65-109. https://doi.org/10.1016/1040-6182(89)90010-4
Gudmundsson, A., Simmenes, T. H., Larsen, B., & Philipp, S. L. (2010). Effects of internal structure and local stresses on fracture propagation, deflection, and arrest in Fault zones. Journal Structural Geology, 32(11), 1643-1655. https://doi.org/10.1016/j.jsg.2009.08.013
Gumbsch, P. (2001). Modelling brittle and semi-brittle fracture processes. Materials Science and Engineering, A(319-321), 1-7. https://doi.org/10.1016/S0921-5093(01)01062-0
Gunn, P., Maidment D., & Milligan. P. (1997). Interpreting aeromagnetic data in areas of limited outcrop. AGSO Journal of Australian Geology and Geophysics, 17(2), 175-186.
Hadizadeh, J., & Tullis, J. (1992). Cataclastic flow and semi-brittle deformation of anorthosite. Journal of Structural Geology, 14(1), 57-63. https://doi.org/10.1016/0191-8141(92)
Haines, S., & van der Pluijm, B. (2008). Clay quantification and Ar-Ar dating of synthetic and natural gouge: Application to the Miocene Sierra Mazatán detachment fault, Sonora, Mexico. Journal of Structural Geology, 30(4), 525-538. https://doi.org/10.1016/j.jsg.2007.11.012
Haines, S. H., Kaproth, B., Marone, C., Saffer, D., & van der Pluijm, B. (2013). Shear zones in clay-rich fault gouge: A laboratory study of fabric development and evolution. Journal of Structural Geology, 51, 206-225. https://doi.org/10.1016/j.jsg.2013.01.002
Hammarstrom, J. M., & Zen, E. A. (1986). Aluminum in hornblende: An empirical geobarometer. American Mineralogist, 71(11-12), 1297-1313.
Hames, W. E., & Bowring, S. A. (1994). An empirical evaluation of the Ar diffusion geometry in muscovite. Earth and Planetary Science Letters, 124(1-4), 161-167. https://doi.org/10.1016/0012-821X(94)00079-4
Hancock, P. L. (1985). Brittle microtectonics Principles and practice. Journal of Structural Geology, 7(3-4), 437-457. https://doi.org/10.1016/0191-8141(85)90048-3
Hanmer, S. (1988). Great Slave Lake shear zone, Canadian Shield: Reconstructed vertical profile of a crustal-scale fault zone. Tectonophysics, 149(3-4), 245-264. https://doi.org/10.1016/0040-1951(88)90176-X
Hanmer, S. (1989). Initiation of cataclastic flow in a mylonite zone. Journal of Structural Geology, 11(6), 751-762. https://doi.org/10.1016/0191-8141(89)90009-6
Hardcastle, K. C. (1989). Possible paleostress tensor configurations derived from fault-slip data in eastern Vermont and western New Hampshire. Tectonics, 8(2), 265-284. https://doi.org/10.1029/TC008i002p0026
Harley, S. L., Kelly, N. M., & Möller, A. (2007). Zircon behavior and the thermal histories of mountain chains. Elements, 3(1), 25-30. https://doi.org/10.2113/gselements.3.1.25
Harlov, D. (2015). Fluids and geochronometers: Charting and dating mass transfer during metasomatism and metamorphism. Journal of Indian Institute of Science, 95(2), 109-123.
Harrison, T. M., Célérier, J., Aikman, A. B., Hermann, J., & Heizler, M. T. (2009). Diffusion of 40Ar in muscovite. Geochimica et Cosmochimica Acta, 73(4), 1039-1051. https://doi.org/10.1016/j.gca.2008.09.038
Hatcher, R. D. (1995). Structural Geology: Principles, concepts, and problems. Prentice Hall.
Hausegger, S., & Kurz, W. (2013). Cataclastic faults along the SEMP fault system (Eastern Alps, Austria): A contribution to fault zone evolution, internal structure and paleo-stresses. Tectonophysics, 608, 237-251. https://doi.org/10.1016/j.tecto.2013.09.032
Heineke, C., Hetzel, R., Nilius, N. P., Zwingmann, H., Todd, A., Mulch, A., Wölfler, A., Glotzbach, C., Akal, C., & Dunkl, I. (2019). Detachment faulting in a divergent core complex constrained by fault gouge dating and low-temperature thermochronology. Journal of Structural Geology, 127, 103865. https://doi.org/10.1016/j.jsg.2019.103865
Hickey, K. A., Barker, S. L. L., Dipple, G. M., Arehart, G. B., & Donelick, R. A. (2014). The brevity of hydrothermal fluid flow revealed by thermal halos around giant gold deposits: Implications for Carlin-type gold systems. Economic Geology, 109(5), 1461-1487. https://doi.org/10.2113/econgeo.109.5.1461
Higgins, M. W. (1971). Cataclastic rocks. Geological Survey Professional Paper, 687. United States Government Printing Office. Library of Congress catalog-card No. 71-611932. Washington.
Hills, S. (1972). Elements of structural geology. Chapman and Hall Ltd. https://doi.org/10.1007/978-94-009-5843-2
Hippertt, J., Lana, C., & Takeshita, T. (2001). Deformation partitioning during folding of banded iron formation. Journal of Structural Geology, 23(5), 819-834. https://doi.org/10.1016/S0191-8141(00)00128-0
Hippertt, J., Rocha, A., Lana, C., Egydio Silva, M., & Takeshita, T. (2001). Quartz plastic segregation and ribbon development in high-grade stripped gneisses. Journal of Structural Geology, 23(1), 67-80. https://doi.org/10.1016/S0191-8141(00)00129-2
Hippertt, J. F., & Massucatto, A. J. (1998). Phyllonitization and development of kilometer-size extension gashes in a continental-scale strike-slip shear zone, north Goiás, central Brazil. Journal of Structural Geology, 20(4), 433-445. https://doi.org/10.1016/S0191-8141(97)00106-5
Hnat, J. S., & van der Pluijm, B. A. (2014). Fault gouge dating in the Southern Appalachians, USA. GSA Bulletin, 126(5-6), 639-651. https://doi.org/10.1130/B30905.1
Hodgson, C. J. (1989). The structure of shear-related, vein-type gold deposits: A review. Ore Geology Reviews, 4(3), 231-273. https://doi.org/10.1016/0169-1368(89)90019-X
Hooper, R. J., & Hatcher, R. D. (1988). Mylonite from the Towaliga fault zone, central Georgia: Products of heterogeneous non-coaxial deformation. Tectonophysics, 152(1-2), 1-17. https://doi.org/10.1016/0040-1951(88)90026-1
Hopgood, A. M. (1999). Determination of structural successions in migmatites and gneisses. Springer Science + Busines Media, B. V. https://doi.org/10.1007/978-94-011-4427-8
Höeppener, R. (1955). Tektonik im Schiefergebirge. Geologische Rundschau, 44, 26-58. https://doi.org/10.1007/BF01802903
Hueck, M., Wemmer, K., Basei, M. A. S., Philipp, R. P., Oriolo, S., Heidelbach, F., Oyhantçabal, P., & Siegesmund, S. (2020). Dating recurrent shear zone activity and the transition from ductile to brittle deformation: White mica geochronology applied to the Neoproterozoic Dom Feliciano Belt in Sourh Brazil. Journal of Structural Geology, 141, 104-199. https://doi.org/10.1016/j.jsg.2020.104199
Hurford, A. J. (1986). Cooling and uplift patterns in the Lepontine Alps, South Central Switzerland and an age of vertical movement on the Insubric fault line. Contributions to Mineralogy and Petrology, 92, 413-427. https://doi.org/10.1007/BF00374424
Iacopini, D., Passchier, C. W., Koehn, D., & Carosi, R. (2007). Fabric attractors in general triclinic flow systems and their application to high strain shear zones: A dynamical system approach. Journal of Structural Geology, 29(2), 298-317. https://doi.org/10.1016/j.jsg.2006.10.002
Ikeya, M. (ed.). (1993). New applications of electron spin resonance. World Scientific. https://doi.org/10.1142/1854
Ikeya, M., Miki, T., & Tanaka, K. (1982). Dating of a fault by electron spin resonance on intrafault materials. Science, 215(4538), 1392-1393. https://doi.org/10.1126/science.215.4538.1392
Jefferies, S. P., Holdsworth, R. E., Wibberley, C. A. J., Shimamoto, T., Spiers, C. J., Niemeijer, A. R., & Lloyd, G. E. (2006). The nature and importance of phyllonite development in crustal-scale fault cores: an example form the Median Tectonic Line, Japan. Journal of Structural Geology, 28(2), 220-235. https://doi.org/10.1016/j.jsg.2005.10.008
Jelinek, V. (1981). Characterization of the magnetic fabric of rocks. Tectonophysics, 79(3-4), 63-67. https://doi.org/10.1016/0040-1951(81)90110-4
Jenkin, G. R. T. (1997). Mode effects on cooling rate estimates from Rb-Sr data. Geology, 25, 907-910.
Jenkin, G. R. T., Ellam, R. M., Rogers, G., & Stuart, F. M. (2001). An investigation of closure temperature of the biotite Rb-Sr system: The importance of cation exchange. Geochimica et Cosmochimica Acta, 65(7), 1141-1160. https://doi.org/10.1016/S0016-7037(00)00560-3
Jiang, D., & White, J. C. (1995). Kinematic of rock flow and the interpretation of geological structures, with particular reference to shear zones. Journal of Structural Gelogy, 17(9), 1249-1265. https://doi.org/10.1016/0191-8141(95)00026-A
Jiang, Y., Zhao, K., Imber, J., Chen, L., & Hu, H. (2020). Recognizing the internal structure of normal faults in clastic rocks and its impact on hydrocarbon migration: A case study from Nanpu Depression in the Bohai Bay Basin, China. Journal of Petroleum Science and Engineering, 184, 106492. https://doi.org/10.1016/j.petrol.2019.106492
Johansen, S. E., & Fossen, H. (2008). Internal geometry of fault damage zones in interbedded siliciclastic sediments. In W. Kurz, C. A. J. Wibberley, J. Imber, C. Collettini, & R. E. Holdsworth (eds), The Internal Structure of Fault Zones: Implications for Mechanical and Fluid-Flow Properties (pp. 35-56), Special Publications vol. 299. Geological Society of London. https://doi.org/10.1144/SP299.3
Johnson, S. E., Lenferink, H. J., Price, N. A., Marsh, J. H., Koons, P. O., West Jr., D. P., & Beane, R. (2009). Clast-based kinematic vorticity gauges: The effects of slip at matrix/clast interfaces. Journal of Structural Geology, 31(11), 1322-1339. https://doi.org/10.1016/j.jsg.2009.07.008
Kadima, E., Delvaux, D., Sebagenzi, S., Tack, L., & Kabeya, S. (2011). Structure and geological history of the Congo Basin: An integrated interpretation of gravity, magnetic and reflection seismic data. Basin Research, 23(5), 499-527. https://doi.org/10.1111/j.1365-2117.2011.00500.x
Keller, E. A., & Pinter, N. (2002). Active tectonics, earthquakes, uplift and landscape (2nd ed.), Prentice Hall, Upper Saddle River.
Kelley, S. (2002). K-Ar and Ar-Ar Dating. Reviews in Mineralogy and Geochemistry, 47(1), 785-818. https://doi.org/10.2138/rmg.2002.47.17
Ketcham, R. A., Donelick, R. A., & Carlson, W. D. (1999). Variability of apatite fission-track annealing kinetics. III: Extrapolation to geological time scales. American Mineralogist, 84(9), 1235-1255. https://doi.org/https://doi.org/10.2138/am-1999-0903
Kilian, R., Heilbronner, R., & Stünitz, H. (2011). Quartz grain size reduction in a granitoid rock and the transition from dislocation to diffusion creep. Journal of Structural Geology, 33(8), 1265-1284. https://doi.org/10.1016/j.jsg.2011.05.004
Killick, A. M. (2003). Fault rock classification: An aid to structural interpretation in mine and exploration geology. South African Journal of Geology, 106(4), 394-402. https://doi.org/10.2113/106.4.395
Kim, Y. S., Peacock, D. C. P., & Sanderson, D. J. (2003). Mesoscale strike-slip faults and damage zones at Marsalforn, Gozo Island, Malta. Journal of Structural Geology, 25(5), 793-812. https://doi.org/10.1016/S0191-8141(02)00200-6
Kirkland, C. L., Fougerouse, D., Reddy, S. M., Hollis, J., & Saxey, D. W. (2018a). Assessing the mechanisms of common Pb incorporation into titanite. Chemical Geology, 483, 558-566. https://doi.org/10.1016/j.chemgeo.2018.03.026
Kirkland, C. L., Yakymchuk, C., Szilas, K., Evans, N., Hollis, J., McDonald, B., & Gardiner, N. J. (2018b). Apatite: A U-Pb thermochronometer or geochronometer? Lithos, 318-319, 143-157. https://doi.org/10.1016/j.lithos.2018.08.007
Kirkpatrick, J. D., & Rowe, C. D. (2013). Disappearing ink: How pseudotachylytes are lost from the rock record. Journal of Structural Geology, 52, 183-198. https://doi.org/10.1016/j.jsg.2013.03.003
Kjenes, M. (2018). The geometry and evolution of deformation bands in volcaniclastic rocks: Insights from Eastern Tawan (Master thesis). Departamento de Ciencias de la Tierra. Universidad de Bergen.
Kligfield, R., Hunziker, J., Dallmeyer, R. D., & Schamel, S. (1986). Dating of deformation phases using K-Ar and Ar/Ar techniques: Results from the Northern Apennines. Journal of Structural Geology, 8(7), 791-798. https://doi.org/10.1016/0191-8141(86)90025-8
Knipe, R. J. (1989). Deformation mechanisms: Recognition from natural tectonites. Journal of Structural Geology, 11(1-2), 127-146. https://doi.org/10.1016/0191-8141(89)90039-4
Kumerics, C., Ring, U., Brichau, S., Glodny, J., & Monié, P. (2005). The extensional Messaria shear zone and associated brittle detachment faults, Aegean Sea, Greece. Journal of the Geological Society, 162(4), 701-721. https://doi.org/10.1144/0016-764904-041
Lacombe, O. (2012). Do fault slip data inversions actually yield “paleostresses” that can be compared with contemporary stresses? A critical discussion. Compter Rendus Geoscience, 344(3-4), 159-173. https://doi.org/10.1016/j.crte.2012.01.006
Lagroix, F., & Borradaile, G. J. (2000). Magnetic fabric interpretation complicated by inclusions in mafic silicates. Tectonophysics, 325(3-4), 207-255. https://doi.org/10.1016/S0040-1951(00)00125-6
Langille, L., Jessup, M. J., Cottle, J. M., Newell, D., & Seward, G. (2010). Kinematic evolution of the Ama Drime detachment: Insights into orogen-parallel extension and exhumation of the Ama Drime Massif, Tibet-Nepal. Journal of Structural Geology, 32(7), 900-919. https://doi.org/10.1016/j.jsg.2010.04.005
Laslett, G. M., Green, P. F., Duddy, I. R., & Gleadow, A. J. W. (1987). Thermal annealing of fission tracks in apatite. 2. A quantitative analysis. Chemical Geology, 65(1), 1-13. https://doi.org/10.1016/0168-9622(87)90057-1
Launeau, P., & Cruden A. R. (1998). Magmatic fabric acquisition mechanisms in a syenite: Results of a combined anisotropy of magnetic susceptibility and image analysis study. Journal of Geophysical Research, 103(B3), 5067-5089. https://doi.org/10.1029/97JB02670
Launeau, P., & Robin, P. Y. (2005). Determination of fabric and strain ellipsoids from measured sectional ellipses: Implementations and applications. Journal of Structural Geology, 27(12), 2223-2233. https://doi.org/10.1016/j.jsg.2005.08.003
Law, R. D. (1990). Crystallographic fabrics: a selective review of their applications to research in structural geology. In R. J. Knipe, & E. H. Rutter (eds.), Deformation mechanisms, rheology and tectonics (pp. 335-352). Special Publication vol. 54. Geological Society of London. https://doi.org/10.1144/GSL.SP.1990.054.01.30
Law, R. D. (2010). Moine thrust zone mylonites at the Stack of Glencoul: II e results of vorticity analyses and their tectonic significance. In R. D. Law, R. W. H. Butler, R. E. Holdsworth, M. Krabbendam, & R. A. Strachan (eds.), Continental tectonics and mountain building: The Legacy of Peach and Horne (pp. 579-602). Special Publications vol. 335. Geological Society of London.
Lawley, C. J. M., Selby, D., & Imber, J. (2013). Re-Os molybdenite, pyrite, and chalcopyrite geochronology, Lupa Goldfield, Southwestern Tanzania: Tracing metallogenic time scales at midcrustal shear zones hosting orogenic Au deposits. Economic Geology, 108(7), 1591-1613. https://doi.org/10.2113/econgeo.108.7.1591
Lee, H. K., & Schwarcz, H. P. (1994). ESR plateau dating of fault gouge. Quaternary Science Reviews, 13(5-7), 629-634. https://doi.org/10.1016/0277-3791(94)90090-6
Lee, H. K., & Yang, J. S. (2007). ESR dating of the Eupchon fault, South Korea. Quaternary Geochronology, 2(1-4), 392-397. https://doi.org/10.1016/j.quageo.2006.04.009
Lee, J. K. W., Williams, I. S., & Ellis, D. J. (1997). Pb, U and Th diffusion in natural zircon. Nature, 390(6656), 159-162. https://doi.org/10.1038/36554
Lin, A. (1999a). S-C cataclasite in granitic rock. Tectonophysics, 304(3), 257-273. https://doi.org/10.1016/S0040-1951(99)00026-8
Lin, A. (1999b). Roundness of clast in pseudotachylytes and cataclastic rocks as an indicator of frictional melting. Journal of Structural Geology, 21(5), 473-478. https://doi.org/10.1016/S0191-8141(99)00030-9
Lin, A. (2008). Fossil earthquakes: The formation and preservation of pseudotachylytes. Lecture notes in Earth Sciences. Springer. Springer-Verlag.
Lin, A., & Yamashita, K. (2013). Spatial variations in damage zone width along strike-slip faults: An example from active faults in southwest Japan. Journal of Structural Geology, 57, 1-15. https://doi.org/10.1016/j.jsg.2013.10.006
Lindanger, M., Gabrielsen, R. H., & Braathen, A. (2007). Analysis of rock lenses in extensional faults. NorwegianzJournal Geology, 87(4), 361-372.
Lister, G. S., & Hobbs, B. E. (1980). The simulation of fabric development during plastic deformation and its application to quartzite: the influence of deformation history. Journal of Structural Geology, 2(3), 355-370. https://doi.org/10.1016/0191-8141(80)90023-1
Lister, G. S., & Snoke, A. W. (1984). S-C mylonites. Journal of Structural Geology, 6(6), 616-638. https://doi.org/10.1016/0191-8141(84)90001-4
Lister, G. S., & Williams, P. F. (1983). The partitioning of deformation in flowing rock masses. Tectonophysics, 92(1-3), 1-33. https://doi.org/10.1016/0040-1951(83)90083-5
Löbens, S., Bense, F. A., Wemmer, K., Dunkl, I., Costa, C. H., Layer, P., & Siegesmund, S. (2011). Exhumation and uplift of the Sierras Pampeanas: Preliminary implications from K-Ar fault gouge dating and low-T thermochronology in the Sierra de Comechingones (Argentina). International Journal of Earth Science, 100, 671-694. https://doi.org/10.1007/s00531-010-0608-0
López-Isaza, J. A., Cuéllar Cárdenas, M. A., Osorio N., J. A. N., Bernal V., L. E. V., & Cortés, E. C. (2008). Pseudotaquilitas y el carácter paleosísmico de un segmento del Sistema de Fallas de Bucaramanga (SFB), noreste del municipio Pailitas, departamento del Cesar, Colombia. Boletín de Geología, 30(2), 79-92.
López-Isaza, J. A., Cuéllar-Cárdenas, M. A., Cetina Tarazona, L. A. T., Forero-Ortega, A. J., Suárez Arias, A. M., Muñoz Rodríguez, O. F., Aguirre, L. M., & Gutiérrez López, M. J. (2020). Representación gráfica de datos estructurales en campo: Una propuesta metodológica para su aplicación en terrenos deformados. Informe interno. Servicio Geológico Colombiano.
Louis, S., Luijendijk, E., Dunkl, I., & Person, M. (2019). Episodic fluid flow in an active fault. Geology, 47(10), 938-942. https://doi.org/10.1130/G46254.1
MacNamee, A., & Stockli, D. F. (2015). Constraining age and locations of active and paleofluid flow systems in Dixie Valley, Nevada, with Apatite (U-Th)/He thermochronometry, AGU fall meeting abstracts, San Francisco, CA, December 2015, Abstract V51H-06.
Magloughlin, J. F. (2010). Discussion of “Classification of fault breccias and related fault rocks”, by Woodcock & Mort: The particular problem of pseudotachylyte. Geological Magazine, 147(6), 971-973. https://doi.org/10.1017/S0016756810000166
Magloughlin, J. F., Hall, C. M., & van der Pluijm, B. A. (2001). 40Ar-39Ar geochronometry of pseydotachylytes by vacuum encapsulation: North Cascade Mountains, Washington, USA. Geology, 29(1), 51-54. https://doi.org/10.1130/0091-7613(2001)029<0051:AAGOPB>2.0.CO;2
Maitland, T., & Sitzman, S. (2007). Electron backscatter diffraction (EBSD) technique and materials characterization examples. In W. Zhou, & Z. L. Wang, Scanning microscopy for nanotechnology: Techniques and applications (pp. 41-75). Springer.
Mallast, U., Gloaguen, R., Geyer, S., Rödiger, T., & Siebert, C. (2011). Derivation of groundwater flow-paths based on semi-automatic extraction of lineaments from remote sensing data. Hydrology and Earth System Sciences, 15(1), 2665-2678. https://doi.org/10.5194/hessd-8-1399-2011
Marchionni, D. S., & Cavayas, F. (2014). La teledetección por radar como fuente de información litológica y estructural. Análisis espacial de imágenes SAR de RADARSAT-1. Geoacta, 39(1), 62-89.
Mariani, E., Prior, D. J., McNamara, D., Pearce, M. A., Seaton, N., Seward, G., Tatham, D., & Wheeler, J. (2008). Electron backscatter diffraction (EBSD) in the SEM: Applications to microstructures in minerals and rocks and recent technological advancements. Seminarios de la Sociedad Española de Mineralogía (5), 7-19.
Marrett, R., & Allmendinger, R. W. (1990). Kinematic analysis of fault-slip data: Journal of Structural Geology, 12(8), 973-986. https://doi.org/10.1016/0191-8141(90)90093-E
Marshak, S., & Mitra, G. (1988). Basic methods of structural geology. Prentice Hall.
McCalpin, J. P. (2009). Paleoseismology (2nd ed.). International Geophysics Series, vol. 95. Elsevier.
McClay, K. (1987). The mapping of geological structures. John Wiley and Sons.
McDermott, R. G., Ault, A. K., Evans, J. P., & Reiners, P. W. (2017). Thermochronometric and mirrors, Wasatch fault zone, UT, USA. Earth and Planetary Science Letters, 471, 85-93. https://doi.org/10.1016/j.epsl.2017.04.020
McGrath, A. G., & Davison, I. (1995). Damage zone geometry around fault tips. Journal of Structural Geology, 17(7), 1011-1024. https://doi.org/10.1016/0191-8141(94)00116-H
McKenzie, D. (1979). Finite deformation during fluid flow. Geophysical Journal of the Royal Astronomical Society, 58(3), 689-715. https://doi.org/10.1111/j.1365-246X.1979.tb04803.x
McWilliams, C. K., Wintsch, R. P., & Kunk, M. J. (2007). Scales of equilibrium and disequilibrium during cleavage formation in chlorite and biotite-grade phyllites, SE Vermont. Journal of Metamorphic Geology, 25(8), 895-913. https://doi.org/10.1111/j.1525-1314.2007.00734.x
Means, W. D., Hobbs, B. E., Lister, G. S., & Williams, P. F. (1980). Vorticity and non-coaxiality in progressive deformations. Journal of Structural Geology, 2(3), 371-378. https://doi.org/10.1016/0191-8141(80)90024-3
Mejía, E. L., Velandia, F., Zuluaga, C. A., López, J. A., & Cramer, T. (2012). Análisis estructural al noreste del volcán Nevado del Ruiz, Colombia: Aporte a la exploración geotérmica. Boletín de Geología, 14(1), 27-21.
Mendivelso, D. L. (2008). Curso de fotogeología, geomorfología y aplicaciones de la percepción remota: Metodología para los levantamientos fotogeológicos. http://recordcenter.sgc.gov.co/B12/23008002524448/documento/pdf/2105244481103000.PDF
Micklethwaite, S., Sheldon, H. A., & Baker, T. (2010). Active fault and shear processes and their implications for mineral deposit formation and discovery. Journal of Structural Geology, 32(2), 151-165. https://doi.org/10.1016/j.jsg.2009.10.009
Miller, H. B. D., Vasconcelos, P. M., Eiler, J. M., & Farley, K. A. (2017). A Cenozoic terrestrial paleoclimate record from He dating and stable isotope geochemistry of goethite from Western Australia. Geology, 45(10), 895-898. https://doi.org/10.1130/G38989.1
Miranda, T. S., Neves, S. P., Celestino, M. A. L., & Roberts, N. M. W. (2020). Structural evolution of the Cruzeiro do Nordeste shear zone (NE Brazil): Brasiliano-Pan-African-ductile-to-brittle transition and Cretaceous brittle reactivation. Journal of Structural Geology, 141, 104203. https://doi.org/10.1016/j.jsg.2020.104203
Mitchell, T. M., & Faulkner, D. R. (2009). The nature and origin of off-fault damage surrounding strike-slip fault zones with a wide range of displacements: a field study from the Atacama fault system, northern Chile. Journal of Structural Geology, 31(8), 802-816. https://doi.org/10.1016/j.jsg.2009.05.002
Moazzen, M., & Drop, G. T. R. (2005). Application of mineral thermometers and barometers to granitoid igneous rocks: The Etive Complex, W Scotland. Mineralogy and Petrology, 83(1), 27-53. https://doi.org/10.1007/s00710-004-0059-z
Moecher, D. P., & Brearley, A. J. (2004). Mineralogy and petrology of a mullite-bearing pseudotachylyte: Constraints on the temperature of coseismic frictional fusion. American Mineralogist, 89(10), 1486-1495. https://doi.org/10.2138/am-2004-1017
Monteiro, H., Vasconcelos, P. M., Farley, K. A., Spier, C. A., & Mello, C. L. (2014). (U-Th)/He geochronology of goethtite and the origin and evolution of cangas. Geochimica et Cosmochimica Acta, 131, 267-289. https://doi.org/10.1016/j.gca.2014.01.036
Moreira, N., & Dias, R. (2018). Domino structures evolution in strike-slip shear zones: The importance of the cataclastic flow. Journal of Structural Geology, 110, 187-201. https://doi.org/10.1016/j.jsg.2018.01.010
Moser, A. C., Evans, J. P., Ault, A. K., Janecke, S. U., & Bradbury, K. K. (2017). (U-Th)/He thermochronometry reveals Pleistocene punctuated deformation and synkinematic hematite minarlization in the Mecca Hills, southernmost San Andreas Fault zone. Earth and Planetary Science Letters, 476, 87-99. https://doi.org/10.1016/j.epsl.2017.07.039
Mottram, C., Grujic, D., & Coutand, I. (2018). Using U-Pb calcite dating to directly-date continental-scale faults. Geophysical Research Abstracts, 20, EGU2018-14685.
Mukherjee, S. (2014). Atlas of shear zone structures in Meso-scale. Springer Science and Business Media.
Mulch, A., & Cosca, M. A. (2004). Recrystallization or cooling ages: In situ UV-laser 40Ar/39Ar geochronology of muscovite in mylonitic rocks. Journal of Geological Society, 161(4), 573-582. https://doi.org/10.1144/0016-764903-110
Mulch, A., Cosca, M. A., & Handy, M. R. (2002). In-situ UV-laser 40Ar/39Ar geochronology of a micaceous mylonite: An example of defect-enhanced argon loss. Contributions to Mineralogy and Petrology, 142, 738-752. https://doi.org/10.1007/s00410-001-0325-6
Müller, W., Mancktelow, N. S., & Meier, M. (2000). Rb-Sr microchrons of synkinematic mica in mylonites: An example from the DAV fault of the Eastern Alps. Earth and Planetary Science Letter, 180(3-4), 385-397. https://doi.org/10.1016/S0012-821X(00)00167-9
Nakamura, N., & Borradaile, G. (2004). Metamorphic control of magnetic susceptibility and magnetic fabrics: a 3-D projection. In F. Martín Hernández, C. M. Luneburg, C. Aubourg, & M. Jackson (eds.), Magnetic fabric: methods and applications – an introduction. Special Publications vol. 238. Geological Society of London. https://doi.org/10.1144/GSL.SP.2004.238.01.01
Nicchio, M. A., Nogueira, F. C. C., Balsamo, F., Souza, J. A. B., Carvalho, B. R. B. M., & Bezerra, F. H. R. (2018). Development of cataclastic foliation in deformation bands in feldspar-rich conglomerates of the Rio do Peixe Basin, NE Brazil. Journal of Structural Geology, 107, 132-141. https://doi.org/10.1016/j.jsg.2017.12.013
Nuriel, P., Miller, D. M., Schmidt, K. M., Coble, M. A., & Maher, K. (2019). Ten-million years of activity within the Eastern California shear zone from U-Pb dating of fault-zone opal. Earth and Planetary Science Letters, 521, 37-45. https://doi.org/10.1016/j.epsl.2019.05.047
Nuriel, P., Rosenbaum, G., Uysal, T. I., Zhao, J., Golding, S. D., Weinberger, R., Karabacak, V., & Avni, Y. (2011). Formation of fault-related calcite precipitates and their implications for dating fault activity in the East Anatolian and Dead Sea fault zones. In A. Fagereng, V. G. Toy, & J. V. Rowland (eds.), Geology of the earthquake source: A volume in honour of Rick Sibson (pp. 229-248). Special Publications vol. 359. Geological Society of London. https://doi.org/10.1144/SP359.13
Nuriel, P., Weinberger, R., Kylander Clark, A. R. C., Hacker, B. R., & Craddock, J. P. (2017). The onset of the Dead Sea transform based on calcite age-strain analyses. Geology, 45(7), 587-590. https://doi.org/10.1130/G38903.1
Ohtani, T., Shigematsu, N., Fujimoto, K., Tomita, T., & Iwano, H. (2004). Grochronological constraint on the brittle-plastic deformation along the Hatagawa fault zone, NE Japan. Earth Planets Space, 56(Suppl. 12), 1201-1027. https://doi.org/10.1186/BF03353341
Oliot, E., Gonçalves, P., Schulmann, K., Marquer, D., & Lexa, O. (2014). Mid-crustal shear zone formation in granitic rocks: Constraints from quantitative textural and crystallographic preferred orientations analyses. Tectonophysics, 612-613, 63-80. https://doi.org/10.1016/j.tecto.2013.11.032
Oriolo, S., Oyhantçabal, P., Heidelbach, F., Wemmer, K., & Siegesmund, S. (2015). Structural evolution of the Sarandí del Yí shear zone: Kinematics, deformation conditions and tectonic significance. International Journal Earth Science, 104(7), 1759-1777. https://doi.org/10.1007/s00531-015-1166-2
Oriolo, S., Oyhantçabal, P., Wemmer, K., Basei, M. A. S., Benowitz, J., Pfänder, J., Hannich, F., & Siegesmund, S. (2016a). Timing of deformation in the Sarandí del Yí shear zone, Uruguay: Implications for the amalgamation of Western Gondwana during the Neoproterozoic Brasiliano-Pan-African Orogeny. Tectonics, 35(3), 754-771. https://doi.org/10.1002/2015TC004052
Oriolo, S., Oyhantçabal, P., Wemmer, K., Heidelbach, F., Pfänder, J., Basei, M. A. S., Hueck, M., Hannich, F., Sperner, B., & Siegesmund, S. (2016b). Shear zone evolution and timing of deformation in the Neoproterozoic transpressional Dom Feliciano Belt, Uruguay. Journal Structural Geology, 92, 59-78. https://doi.org/10.1016/j.jsg.2016.09.010
Oriolo, S., Wemmer, K., Oyhantçabal, P., Fossen, H., Schulz, B., & Siegesmund, S. (2018). Geochronology of shear zones: A review. Earth-Science Reviews, 185, 665-683. https://doi.org/10.1016/j.earscirev.2018.07.007
Ortner, H., Reiter, F., & Acs, P. (2002). Easy handling of tectonic data: The programs TectonicVP for Mac and TectonicsFP for Windows. Computers & Geosciences, 28(10), 1193-1200. https://doi.org/10.1016/S0098-3004(02)00038-9
Ostermeijer, G. A., Mitchell, T. M., Aben, F. M., Dorsey, M. T., Browning, J., Rockwell, T. K., Fletcher, J. M., & Ostermeijer, F. (2020). Damage zone heterogeneity on seismogenic faults in crystalline rock; a field study of the Borrego Fault, Baja California. Journal of Structural Geology, 137, 104016. https://doi.org/10.1016/j.jsg.2020.104016
Oyhantçabal, P., Heimann, A., & Miranda, S. (2001). Measurement and interpretation of strain in the syntectonic Solís de Mataojo Granitic Complex, Uruguay. Journal of Structural Geology, 23(5), 807-817. https://doi.org/10.1016/S0191-8141(00)00152-8
Oyhantçabal, P., Muzio, R., & de Souza, S. (1993). Geología y aspectos estructurales del borde orogénico en el extremo sur del cinturón Dom Feliciano. Revista Brasileira de Geociências, 23(3), 296-300. https://doi.org/10.25249/0375-7536.1993233296300
Oyhantçabal, P., Siegesmund, S., Wemmer, K., & Layer, P. (2009). The Sierra Ballena shear zone in the southernmost Dom Feliciano Belt (Uruguay): Evolution, kinematics, and deformation conditions. International Journal of Earth Sciences, 99, 1227-1246. https://doi.org/10.1007/s00531-009-0453-1
Oyhantçabal, P., Wegner Eimer, M., Wemmer, K., Schulz, B., Frei, R., & Siegesmund, S. (2012). Paleo-and Neoproterozoic magmatic and tectonometamorphic evolution of the Isla Cristalina de Rivera (Nico Pérez Terrane, Uruguay). International Journal of Earth Sciences, 101, 1745-1762. https://doi.org/10.1007/s00531-012-0757-4
Pagel, M., Bonifacie, M., Schneider, D. A., Gautheron, C., Brigaud, B., Calmels, D., Cros, A., Saint-Bezar, B., Landrein, P., & Sutcliffe, C. (2018). Improving paleohydrological and diagenetic reconstructions in calcite veins and breccia of a sedimentary basin by combining ?47 temperature, d18Owater and U-Pb age. Chemical Geology, 481, 1-17. https://doi.org/10.1016/j.chemgeo.2017.12.026
Paine, D. P., & Kiser, J. D. (2003). Aerial photography and image interpretation (2nd ed.). Wiley.
Papeschi, S., Musumeci, G., & Mazzarini, F. (2018). Evolution of shear zones through the brittle-ductile transition: The Calamita Schists (Elba Island, Italy). Journal of Structural Geology, 113, 100-114. https://doi.org/10.1016/j.jsg.2018.05.023
Park, S., Kim, Y., Ryoo, C., & Sanderson, D. J. (2010). Fractal analysis of the evolution of a racture network in a granite outcrop, SE Korea. Geosciences Journal, 14, 201-215. https://doi.org/10.1007/s12303-010-0019-z
Parsons, A. J., Ferré, E. C., Law, R. D., Lloyd, G. E., Phillips, R. J., & Searle, M. P. (2016). Orogen-parallel deformation of the Himalayan midcrust: Insights from structural and magnetic fabric analyses of the Greater Himalayan Sequence, Annapurna-Dhaulagiri Himalaya, central Nepal. Tectonics, 35(11), 2515-2537. https://doi.org/10.1002/2016TC004244
Passchier, C. W. (1997). The fabric attractor. Journal of Structural Geology, 19(1), 113-127. https://doi.org/10.1016/S0191-8141(96)00077-6
Passchier, C. W., & Coelho, S. (2006). An outline of shear-sense analysis in high-grade rocks. Gondwana Research, 10(1), 66-76. https://doi.org/10.1016/j.gr.2005.11.016
Passchier, C. W., Myers, J. S., & Kröner, A. (1990). Field geology of high-grade gneiss terrains. Springer-Verlag. https://doi.org/10.1007/978-3-642-76013-6
Passchier, C. W., & Trouw, R. A. J. (2005). Microtectonics. Springer Science and Business Media. https://doi.org/10.1007/3-540-29359-0
Paterson, S. R., & Vernon, R. H. (1995). Bursting the bubble of ballooning plutons: A return to nested diapirs emplaced by multiple processes. GSA Bulletin, 107(11), 1356-1380. https://doi.org/10.1130/0016-7606(1995)107<1356:BTBO BP>2.3.CO;2
Paterson, S. R., Fowler, T. K. J., Schmidt, K. L., Yoshinobu, A. S., Yuan, E. S., & Miller, R. B. (1998). Interpreting magmatic fabric patterns in plutons. Lithos, 44(1-2), 53-82. https://doi.org/10.1016/S0024-4937(98)00022-X
Paterson, S. R., Vernon, R. H., & Tobisch, O. T. (1989). A review of criteria for the identification of magmatic and tectonic foliations in granitoids. Journal of Structural Geology, 11(3), 349-363. https://doi.org/10.1016/0191-8141(89)90074-6
Pec, M., Stünitz, H., & Heilbronner, R. (2012). Semi-brittle deformation of granitoid gouges in shear experiments at elevated pressures and temperatures. Journal of Structural Geology, 38, 200-221. https://doi.org/10.1016/j.jsg.2011.09.001
Pennacchioni, G., & Zucchi, E. (2013). High temperature fracturing and ductile deformation during cooling of a pluton: the Lake Edison granodiorite (Sierra Nevada batholith, California). Journal Structural Geology, 50, 54-81. https://doi.org/10.1016/j.jsg.2012.06.001
Petit, J. P. (1987). Criteria for the sense of movement on fault surfaces in brittle rocks. Journal of Structural Geology, 9(5-6), 597-608. https://doi.org/10.1016/0191-8141(87)90145-3
Philpotts, A. R. (1964). Origin of pseudotachylytes. American Journal of Science, 262(8), 1008-1035. https://doi.org/10.2475/ajs.262.8.1008
Picazo, S., Manatschal, G., Cannat, M., & Andréani, M. (2013). Lithos deformation associated to exhumation of serpentinized mantle rocks in a fossil Ocean Continent transition: The Totalp unit in SE Switzerland. Lithos, 175-176, 255-271. https://doi.org/10.1016/j.lithos.2013.05.010
Platt, J. P. (2015). Rheology of two-phase systems: A microphysical and observational approach. Journal of Structuctural Geolology, 77, 213-227. https://doi.org/10.1016/j.jsg.2015.05.003
Powell, R., & Holland, T. J. B. (1994). Optimal geothermometry and geobarometry. American Mineralogist, 79(1-2), pp. 120-133.
Powell, R., & Holland, T. J. B. (2001). Course Notes for “Thermocalc Workshop 2001: Calculating Metamorphic Phase Equilibria”.
Powell, R., & Holland, T. J. B. (2008). On thermobarometry. Journal of Metamorphic Geology, 26(2), pp. 155-179. https://doi.org/10.1111/j.1525-1314.2007.00756.x
Powell, R., Holland, T. J. B., & Worley, B. (1998). Calculating phase diagrams involving solid solutions via non-linear equations, with examples using Thermocalc. Journal of Metamorphic Geology, 16(4), 577-588. https://doi.org/10.1111/j.1525-1314.1998.00157.x
Prent, A. M., Beinlich, A., Raimondo, T., Kirkland, C. L., Evans, N. J., & Putnis, A. (2020). Apatite and monazite: An effective duo to unravel superimposed fluid-flow and deformation events in reactivated shear zones. Lithos, 376-377, 105752. https://doi.org/10.1016/j.lithos.2020.105752
Précigout, J., Prigent, C., Palasse, L., & Pochon, A. (2017). Water pumping in mantle shear zones. Nature Commununications, 8, 15736. https://doi.org/10.1038/ncomms15736
Prigent, C., Warren, J., Kohli, A., & Teyssier, C. (2017). The semi-brittle to ductile transition in oceanic faults in peridotite: Mechanisms and P-T conditions. In AGU Fall Meeting 2017, 1-2, Nueva Orleáns.
Prior, D. J., Boyle, A. P., Brenker, F., Cheadle, M.C., Day, A., Lopez, G., Peruzzo, L., Potts, G. J., Reddy, S., Spiess, R., Timms, N. E., Trimby, P., Wheeler, J., & Zetterstrom, L. (1999). The application of electron backscatter diffraction and orientation contrast imaging in the SEM to textural problems in rocks. American Mineralogist, 84(11-12), 1741-1759. https://doi.org/10.2138/am-1999-11-1204
Purdy, J. W., & Jäger, E. (1976). K-Ar ages on rock-forming minerals from the Central Alps. Memorie degli Istituti di geologia e mineralogia dell’Università di Padova, 30, 3-31.
Qju, D., Liu, Q., Yun, J., Jin, Z., Zhu, D., Li, T., & Sun, D. (2018). Electron spin resonance (ESR) dating of pre-Quaternary faults in the Sichuan basin, SW China. Journal of Asian Earth Sciences, 163, 142-151. https://doi.org/10.1016/j.jseaes.2018.06.011
Rampal, K. K. (1999). Handbook of aerial photography and interpretation. Concept Publishing Company. https://books. google.com.co/books?id=rmiPV3ABi9EC
Ramsay, J. G., & Huber, M. I. (1983). The techniques of modern structural geology. Vol. 1: Strain analysis. Academic Press.
Ramsay, J. G. (1980a). The crack-seal mechanism of rock deformation. Nature, 284(5752), 135-139. https://doi.org/10.1038/284135a0
Ramsay, J. G. (1980b). Shear zone geometry: A review. Journal of Structural Geology, 2(1-2), 83-99. https://doi.org/10.1016/0191-8141(80)90038-3
Ramsay, J. G., & Huber, M. I. (1987). The techniques of modern structural geology. Vol. 2: Folds and fractures. Academic Press.
Rao, D. P. (2002). Remote sensing application in geomorphology. Tropical Ecology, 43(1), 49-59.
Rasbury, E. T., & Cole, J. M. (2009). Directly dating geologic events: U-Pb dating of carbonates. Reviews of Geophysics, 47(3), RG3001. https://doi.org/10.1029/2007RG000246
Reavy, R. (1989). Structural controls on metamorphism and syntectonic magmatism: The Portuguese Hercyan collision belt. Journal of the Geological Society, 146(4), 649-657. https://doi.org/10.1144/gsjgs.146.4.0649
Reber, J. E., & Pec, M. (2018). Comparison of brittle and viscous creep in quartzites: Implications for semi-brittle flow of rocks. Journal of Structural Geology, 113, 90-99. https://doi.org/10.1016/j.jsg.2018.05.022
Reddy, S., & Potts, G. (1999). Deformation mechanisms and Ar isotope systematics. In Micas: Implications for absolute deformation ages. Journal of Conference Abstracts, 4(1), 830 p. Cambridge Publications. Cambridge, United Kingdom.
Reddy, S. M., Timms, N. E., Pantleon, W., & Trimby, P. (2007). Quantitative characterization of plastic deformation of zircon and geological implications. Contributions to Mineralogy and Petrology, 153(6), 625-645. https://doi.org/10.1007/s00410-006-0174-4
Reiners, P. W., & Brandon, M. T. (2006). Using thermochronology to understand orogenic erosion. Annual Reviews or Earth and Planetary Sciences, 34(1), 419-466. https://doi.org/10.1146/annurev.earth.34.031405.125202
Ribeiro, B. V., Faleiros, F. M., Campanha, G. A. C., Lagoeiro, L., Weinberg, R. F., & Hunter, N. J. R. (2019). Kinematics, deformational conditions and tectonic setting of the Taxaquara shear zone, a major transpressional zone of the Ribeira Belt (SE Brazil). Tectonophysics, 751, 83-108. https://doi.org/10.1016/j.tecto.2018.12.025
Ribeiro, B. V., Lagoeiro, L., Faleiros, F. M., Hunter, N. J. R., Queiroga, G., Raveggi, M., Cawood, P. A., Finch, M., & Campanha, G. A. C. (2020a). Strain localization and fluid-assited deformation in apatite and its influence on trace elements and U-Pb systematics. Earth and Planetary Science Letters, 542, 116421. https://doi.org/10.1016/j.epsl.2020.116421
Ribeiro, B. V., Mulder, J. A., Faleiros, F. M., Kirkland, C. L., Cawood, P. A., O’Sullivan, G., Campanha, G. A. C., Finch, M. A., Weinberg, R. F., & Nebel, O. (2020b). Using apatite to resolve the age and protoliths of mid-crustal shear zones: A case study from the Taxaquara shear zone, SE Brazil. Lithos, 378-379, 105817. https://doi.org/10.1016/j.lithos.2020.105817
Richard, J., Gratier, J. P., Doan, M. L., Boullier, A. M., & Renard, F. (2014). Rock and mineral transformations in a fault zone leading to permanent creep: Interactions between brittle and viscous mechanisms in the San Andreas Fault. Journal of Geophysical Research: Solid Earth, 119(11), 8132-8153. https://doi.org/10.1002/2014JB011489
Ricchi, E., Bergemann, C. A., Gnos, E., Berger, A., Rubatto, D., Whitehouse, M. J., & Walter, F. (2020). Cenozoic deformation in the Tauern Window (Eastern Alps) constrained by in situ Th-Pb dating of fissure monazite. Solid Earth, 11(2), 437-467. https://doi.org/10.5194/se-11-437-2020
Ricchi, E., Gnos, E., Rubatto, D., Whitehouse, M. J., & Pettke, T. (2020). Ion microprobe dating of fissure monazite in the Western Alps: Insights from the Argentera Massif and the Piemontais and Briançonnais Zones. Swiss Journal of Geosciences, 113(1), 1-27. https://doi.org/10.1186/s00015-020-00365-3
Riedmüller, G., Brosch, F. J., Klima, K., & Medley, E. W. (2001). Engineering geological characterization of brittle faults and classification of fault rocks. Felsbau, 19(4), 13-19.
Riley, P. R., Goodwin, L. B., & Lewis, C. J. (2010). Controls on fault damage zone width, structure, and symmetry in the Bandelier Tuff, New Mexico. Journal of Structural Geology, 32(6), 766-780. https://doi.org/10.1016/j.jsg.2010.05.005
Ring, U., Uysal, I. T., Glodny, J., Cox, S. C., Little, T., Thomson, S. N., Stübner, K., & Bozkaya, Ö. (2017). Fault-gouge dating in the Southern Alps, New Zealand. Tectonophysics, 717, 321-338. https://doi.org/10.1016/j.tecto.2017.08.007
Roberts, N. M. W. (2019). Mind over methods: Dating deformation with U-Pb carbonate geochronology. EGU Blogs, Divisions, Tectonics and Structural Geology. https://blogs. egu.eu/divisions/ts/2019/08/16/minds-over-methods-dating-deformation-with-u-pb-carbonate-geochronology/
Roberts, N. M. W., & Walker, R. (2016). U-Pb geochronology of calcite-mineralized faults: Absolute timing of rift-related fault events on the northeast Atlantic margin. Geology, 44(7), 531-534. https://doi.org/10.1130/G37868.1
Roberts, N. M. W., Drost, K., Horstwood, M. S. A., Condon, D. J., Chew, D., Drake, H., Milodowski, A. E., McLean, N. M., Smye, A. J., Walker, R. J., Haslam, R., Hodson, K., Imber, J., Beaudoin, N., & Lee, J. K. (2020a). Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) U-Pb carbonate geochronology: Strategies, progress, and limitations. Geochronology, 2, 33-61. https://doi.org/10.5194/gchron-2-33-2020
Roberts, N. M. W., Lee, J. K., Holdsworth, R. E., Jeans, C., Farrant, A. R., & Haslam, R. (2020b). Near-surface Paleocene fluid flow, mineralization and faulting at Flamborough Head, UK: New field observations and U-Pb calcite dating constraints. Solid Earth, 11(5), 1931-1945. https://doi.org/10.5194/se-11-1931-2020
Robin, P. Y. F. (2002). Determination of fabric and strain ellipsoids from measured sectional ellipses-theory. Journal Structural Geology, 24(3), 531-544. https://doi.org/10.1016/S0191-8141(01)00081-5
Romn-Berdiel, T., Gapais, D., & Brun, J. P. (1997). Granite intrusion along strike slip zones in experiment and nature. American Journal of Science, 297(6), 651-678. https://doi.org/10.2475/ajs.297.6.651
Rosenberg, C. L. (2004). Shear zones and magma ascent: A model based on a review of the Tertiary magmatism in the Alps. Tectonics, 23(3), TC3002. https://doi.org/10.1029/2003TC001526
Rutter, E. H., Mecklenburgh, J., & Brodie, K. H. (2011). Rock mechanics constraints on mid-crustal, low-viscosity flow beneath Tibet. In D. J. Prior, E. H. Rutter, & D. J. Tatham (eds.), Deformation mechanisms, rheology and tectonics: Microstructures, mechanics and anisotropy (pp. 329-336). Special Publications vol. 360. Geological Society of London. https://doi.org/10.1144/SP360.19
Rutter, E. H. (1986). On the nomenclature of mode of failure transitions in rocks. Tectonophysics, 122(3-4), 381-387. https://doi.org/10.1016/0040-1951(86)90153-8
Sainz, A. C., Peña, I. G., & Gómez, J. S. (1990). Los métodos de análisis de paleoesfuerzos a partir de poblaciones de fallas: Sistemática y técnicas de aplicación. Estudios Geológicos, 46(5-6), 385-398. https://doi.org/10.3989/egeol.90465-6469
Sanderson, S., & Marchini, O. (1984). Transpression. Journal of Structural Geology, 6(5), 449-458. https://doi.org/10.1016/0191-8141(84)90058-0
Santamaría-Díaz, A., Alaniz-Álvarez, S. A., & Nieto-Samaniego, A. F. (2008). Deformaciones cenozoicas en la cobertura de la falla Caltepec en la región de Tamazulapam, sur de México. Revista Mexicana de Ciencias Geológicas, 25(3), 494-516.
Santos, J. O. S., Hartmann, L. A., Bossi, J., Campal, N., Schipilov, A., Piñeyro, D., & McNaughton, N. J. (2003). Duration of the Trans-Amazonian cycle and its correlation within South America based on U-Pb Shrimp Geochronology of the La Plata Craton, Uruguay. International Geology Review, 45(3), 27-48. https://doi.org/10.2747/0020-6814.45.1.27
Sarkarinejad, K., Heyhat, M., Faghih, A., & Kusky, T. (2010). Heterogeneous ductile deformation and quartz c-axis fabric development within the HP-LT Sanandaj-Sirjan Metamorphic Belt, Iran. Tectonophysics, 485(1-4), 283-289. https://doi.org/10.1016/j.tecto.2010.01.006
Sausgruber, T., & Brandner, R. (2001). The relevance of brittle fault zones in tunnel construction: Lower inn valley feeder line north of the Brenner base tunnel, Tyrol, Austria. Mitt. Österreichische Geologische Gesellschaft, 94, 157-172.
Scheiber, T., Viola, G., Van der Lelij, R., Margreth, A., & Schönenberger, J. (2019). Microstructurally-constrained versus bulk fault gouge K-Ar dating. Journal of Structural Geology, 127, 103868. https://doi.org/10.1016/j.jsg.2019.103868
Schmidt, M. W. (1992). Amphibole composition in tonalite as a function of pressure: An experimental calibration of the Al-in-hornblende barometer. Contributions to Mineralogy and Petrology, 110(2-3), 304-310. https://doi.org/10.1007/bf00310745
Schmid, S. M., & Casey, M. (1986). Complete fabric analysis of some commonly observed quartz c-axis patterns. In Mineral and Rock Deformation: Laboratory Studies, vol. 36 American Geophysical Union. https://doi.org/10.1029/GM036p0263
Schmid, S. M., & Handy, M. R. (1991). Towards a genetic classification of fault rocks: Geological usage and tectonophysical implication. In D. W. Mu¨ller, J. A. McKenzie, & H. Weissert, Controversies in modern geology: Evolution of geological theories in sedimentology, earth history and tectonics. Academic Press.
Schneider, S., Hammerschmidt, K., & Rosenberg, C. L. (2013). Dating the longevity of shear zones: Insight from 40Ar/39Ar in situ analysis. Earth and Planetary Science Letters, 369-370, 43-58. https://doi.org/10.1016/j.epsl.2013.03.002
Schoene, B. (2014). U-Th-Pb geochronology. In R. L. Rudnick (ed). Treatise on geochemistry: The crust (pp. 341-378). Elsevier, 4.
Scholz, C. H. (1987). Wear and gouge formation in brittle faulting. Geology, 15(6), 493-495. https://doi.org/10.1130/0091-7613(1987)15<493:WAGFIB>2.0.CO
Scholz, C. H. (1988). The brittle-plastic transition and the depth of seismic faulting: Geologische Rundschau, 77(1), 319-328. https://doi.org/10.1007/BF01848693
Scholz, C. H. (2006). The mechanics of Earthquakes and faulting (2nd ed.). Cambridge University Press. https://doi.org/10.1017/9781316681473
Selverstone, J., Axen, G. J., & Luther, A. (2012). Fault localization controlled by fluid infiltration into mylonites: Formation and strength of low-angle normal faults in the midcrustal brittle-plastic transition. Journal of Geophysical Research: Solid Earth, 117(B6), B06210. https://doi.org/10.1029/2012JB009171
Sherlock, S. C., & Hetzel, R. (2001). A laser-probe 40Ar/39Ar study of pseudotachylite from the Tambach Fault Zone, Kenya: Direct isotopic dating of brittle faults. Journal Structural Geology, 23(1), 33-44. https://doi.org/10.1016/S0191-8141(00)00082-1
Sherlock, S. C., Strachan, R. A., & Jones, K. A. (2009). High spatial resolution 40Ar/39Ar dating of pseudotachylites: Geochronological evidence for multiple phases of faulting within basement gneisses of the Outer Hebrides (UK). Journal of the Geological Society of London, 166(6), 1049-1059. https://doi.org/10.1144/0016-76492008-125
Short, H. A., & Johnson, S. E. (2006). Estimation of vorticity from fibrous calcite veins, central Maine, USA. Journal of Structural Geology, 28(7), 1167-1182. https://doi.org/10.1016/j.jsg.2006.03.024
Shuster, D. L., Vasconcelos, P. M., Heim, J. A., & Farley, K. A. (2005). Weathering geochronology by (U-Th)/He dating of goethite. Geochimica et Cosmochimica Acta, 69(3), 659-673. https://doi.org/10.1016/j.gca.2004.07.028
Sibson, R. H. (1975). Generation of pseudotachylite by ancient seismic faulting. Geophysical Journal International, 43(3), 775-794. https://doi.org/10.1111/j.1365-246X.1975. tb06195.x
Sibson, R. H. (1983). Continental fault structure and the shallow earthquake source. Journal of the Geological Society, 140(5), 741-767. https://doi.org/10.1144/gsjgs.140.5.0741
Sibson, R. H. (1977). Fault rocks and fault mechanisms. Journal of the Geological Society, 133(3), 191-213. https://doi.org/10.1144/gsjgs.133.3.0191
Sibson, R. H. (1979). Fault rocks and structure as indicators of shallow earthquake source processes. U. S. Geological Survey Open-File Report (79), 1239. Proceedings of conference VIII -Analysis of actual fault zones in bedrock.
Sibson, R. H. (1980). Transient discontinuities in ductile shear zones. Journal of Structural Geology, 2(1-2), 165-171. https://doi.org/10.1016/0191-8141(80)90047-4
Sibson, R. H. (1990). Conditions for fault-valve behaviour. In R. J. Knipe, & E. H. Rutter (eds.), Deformation mechanisms, rheology and tectonics (pp. 15-28). Special Publications vol. 54. Geological Society of London. https://doi.org/10.1144/GSL.SP.1990.054.01.02
Siegesmund, S., Steenken, A., López, M. G. L., Wemmer, K., Hoffman, A., & Mosh, S. (2004). The Las Chacras-Potrerillo batholith (Pampean Ranges, Argentina): Structural evidences, emplacement and timing of the intrusion. International Journal Earth Science, 93(1), 23-43. https://doi.org/10.1007/s00531-003-0363-6
Simpson, C. (1986). Fabric development in brittle-to-ductile shear zones. Pure and Applied Geophysics, 124(1-2), 269-288. https://doi.org/10.1007/BF00875728
Sippel, J., Scheck-Wenderoth, M., Reicherter, K., & Stanislaw Mazur, S. (2009). Paleostress states at the south-western margin of the Central European Basin System-application of fault-slip analysis to unravel a polyphase deformation pattern. Tectonophysics, 470(1-2), 129-146. https://doi.org/10.1016/j.tecto.2008.04.010
Smeraglia, L., Berra, F., Billi, A., Boschi, C., Carminati, E., & Doglioni, C. (2016). Origin and role of fluids involved in the seismic cycle of extensional faults in carbonate rocks. Earth and Planetary Science Letters, 450, 292-305. https://doi.org/10.1016/j.epsl.2016.06.042
Smith, L., Porster, C. B., & Evans, J. P. (1990). Interaction of faults zones, fluid flow, and heat transfer at the basin scale. En: Hydrogeology of permeability environments. (pp. 41-67). Vol. 2. International Association of Hydrogeologists.
Smith, M. J., & Pain, C. F. (2009). Applications of remote sensing in geomorphology. Progress in Physical Geography: Earth and Environment, 33(4), 568-582. https://doi.org/10.1177/0309133309346648
Snoke, A. W., Tullis, J., & Todd, V. R. (1998). Fault related rocks: A photographic atlas. Princeton University Press.
Spear, F. S. (1993). Metamorphic phase equilibria and pressure-temperature-time paths. Monograph Series, Mineralogical Society of America, D.C.
Sperner, B., & Ratschbacher, L. (1994). A Turbo Pascal program package for graphical presentation and stress analysis of calcite deformation. Zeitschrift der Deutschen Geologischen Gesellschaft, 145, 414-423.
Sperner, B., Ratschbacher, L., & Ott, R. (1993). Fault-striae analysis: a Turbo Pascal program package for graphical presentation and reduced stress tensor calculation. Computers & Geosciences, 19(9), 1361-1388. https://doi.org/10.1016/0098-3004(93)90035-4
Sperner, B., & Zweigel, P. (2010). A plea for more caution in fault-slip analysis. Tectonophysics, 482(1-4), 29-41. https://doi.org/10.1016/j.tecto.2009.07.019
Spray, J. G. (1995). Pseudotachylyte controversy: Fact or friction? Geology, 23(12), 1119-1122. https://doi.org/10.1130/0091-7613(1995)023<1119:PCFOF>2.3.CO;2
Spruzeniece, L., & Piazolo, S. (2015). Strain localization in brittle-ductile shear zones: Fluid-abundant vs. fluid-limited conditions (an example from Wyangala area, Australia). Solid Earth Discussions, 7(2), 1399-1446. https://doi.org/10.5194/sed-7-1399-2015
Srivastava, D. C., Lisle, R. J., & Vandycke, S. (1995). Shear zones as a new type of paleostress indicator. Journal of Structural Geology, 17(5), 663-673. https://doi.org/10.1016/0191-8141(94)00084-D
Steenken, A., Siegesmund, S., & Heinrichs, T. (2000). The emplacement of the Rieserferner Pluton (Eastern Alps, Tyrol): Constraints from field observations, magnetic fabrics and microstructures. Journal Structural Geology, 22(11-12), 1855-1873. https://doi.org/10.1016/S0191-8141(00)00071-7
Steffen, K. J., & Selverstone, J. (2006). Retrieval of P-T information from shear zones: Thermobarometric consequences of changes in plagioclase deformation mechanisms. Contributions to Mineralogy and Petrology, 151, 600. https://doi.org/10.1007/s00410-006-0073-8
Stewart, J. R., & Betts, P. G. (2010). Late Paleo-Mesoproterozoic plate margin deformation in the southern Gawler Craton: Insights from structural and aeromagnetic analysis. Precambrian Research, 177(1-2), 55-72. https://doi.org/10.1016/j.precamres.2009.11.004
Stewart, J. R., Betts, P. G., Collins, A. S., & Schaefer, B. F. (2009). Multi-scale analysis of Proterozoic shear zones: An integrated structural and geophysical study. Journal of Structural Geology, 31(10), 1238-1254. https://doi.org/10.1016/j.jsg.2009.07.002
Stipp, M., Stünitz, H., Heilbronner, R., & Schmid, S. M. (2002). Dynamic recrystallization of quartz: Correlation between natural and experimental conditions. In S. De Meer, M. R. Drury, J. H. P. De Bresser, & G. M. Pennock (eds.), Deformation mechanisms, rheology and tectonics: Current status and future perspectives (pp. 171-190). Special Publication vol. 200. Geological Society of London.
Stockli, D. F., Surpless, B. E., Dumitru, T. A., & Farley, K. A. (2002). Thermocrhonological constraints on the timing and magnitude of Miocene and Pliocene extension in the central Wassuk Range, western Nevada. Tectonics, 21(4), 10-28. https://doi.org/10.1029/2001TC001295
Storti, F., Holdsworth, R. E., & Salvini, F. (2003). Intraplate strike-slip deformation belts. In F. Storti, R. E. Holdsworth, & F. Salvini (eds.), Intraplate strike-slip deformation belts (pp. 1-14). Special Publication vol. 210. Geologicas Society of London
Stünitz, H. (1998). Syndeformational recrystallization: Dynamic or compositionally induced? Contribution to Mineralogy and Petrology, 131, 219-236. https://doi.org/10.1007/s004100050390
Süssenberger, A., Schmidt, S. T., Wemmer, K., Baumgartner, L. P., & Grobéty, B. (2017). Timing and thermal evolution of fold-and-thrust belt formation in the Última Esperanza District, 51° S Chile: Constraints from K-Ar dating and illite characterization. GSA Bulletin, 130(5), 975-998. https://doi.org/10.1130/B31766.1
Swanson, M. T. (1992). Fault structure, wear mechanisms and rupture processes in pseudotachylyte generation. Tectonophysics, 204(3-4), 223-242. https://doi.org/10.1016/0040-1951(92)90309-T
Tagami, T. (2012). Thermochronological investigation of fault zones. Tectonophysics, 538-540, 67-85. https://doi.org/10.1016/j.tecto.2012.01.032
Tagami, T. (2019). Application of fission-track thermochronology to understand fault zones (pp. 221-233). In M. Malusà, & P. Fitzgerald (eds.). Fission-track thermochronology and its application to geology. Springer. https://doi.org/10.1007/978-3-319-89421-8_12
Tagami, T., & Murakami, T. (2007). Probing fault zone heterogeneity on the Nojima fault: Constraints from zircon fission-track analysis of borefole samples. Tectonophysics, 443(3-4), 139-152. https://doi.org/10.1016/j.tecto.2007.01.013
Ten Grotenhuis, S. M., Trouw, R. A. J., & Passchier, C. W. (2003). Evolution of mica fish in mylonitic rocks. Tectonophysics, 372(1-2), 1-21. https://doi.org/10.1016/S0040-1951(03)00231-2
Thakur, P., Srivastava, D. C., & Gupta, P. K. (2020). HGA: A genetic algorithm method for direct estimation of paleostress states from heterogeneous fault-slip data. Journal of Structural Geology, 138, 104084. https://doi.org/10.1016/j.jsg.2020.104084
Thigpen, J. R., Law, R. D., Lloyd, G. E., & Brown, S. J. (2010). Deformation temperatures, vorticity of flow, and strain in the Moine thrust zone and Moine nappe: Reassessing the tectonic evolution of the Scandian foreland-hinterland transition zone. Journal of Structural Geology, 32(7), 920-940. https://doi.org/10.1016/j.jsg.2010.05.001
Tillberg, M., Drake, H., Zack, T., Hogmalm, J., & Astrom, M. (2017). In situ Rb-Sr dating of fine-grained vein mineralizations using LA-ICP-MS. Procedia Earth and Planetary Science, 17, 464-467. https://doi.org/10.1016/j.proeps.2016.12.117
Tillberg, M., Drake, H., Zack, T., Kooijman, E., Whitehouse, M. J., & Åström, M. E. (2020). In situ Rb-Sr dating of slickenfibres in deep crystalline basement faults. Scientific Reports, 10, 1-13, 2020. https://doi.org/10.1038/s41598-019-57262-5
Timms, N. E., Kinny, P. D., Reddy, S. M., Evans, K., Clark, C., & Healy, D. (2011). Relationship among titanium, rare Earth elements, U-Pb ages and deformation microstructures in zircon: Implications for Ti-in-zircon thermometry. Chemical Geology, 280(1-2), 33-46. https://doi.org/10.1016/j.chemgeo.2010.10.005
Tinkham, D. K. (2007). Metamorphic phase equilibria modeling: Techniques and programs. An informal short course manual. The University of Alabama. Metamorphic Studies Group. October 22-24.
Torgersen, E., & Viola, G. (2014). Structural and temporal evolution of a reactivated brittle-ductile fault. Part I: Fault architecture, strain localization mechanisms and deformation history. Earth and Planetary Science Letters, 407, 205-220. https://doi.org/10.1016/j.epsl.2014.09.019
Tranos, M. D. (2009). Faulting of Lemnos Island: A mirror of faulting of the North Aegean Trough (Northern Greece). Tectonophysics, 467(1-4), 72-88. https://doi.org/10.1016/j.tecto.2008.12.018
Tranos, M. D. (2011). Strymon and Strymonikos Gulf basins (Northern Greece): Implications on their formation and evolution from faulting. Journal of Geodynamics, 51(4), 285-305. https://doi.org/10.1016/j.jog.2010.10.002
Trouw, R. A. J., Passhier, C. W., & Wiersma, D. R. (2010). Atlas of mylonites, and related microstructures (2nd ed.). Springer Science and Business Media. https://doi.org/10.1007/978-3-642-03608-8
Truesdell, C. (1953). Two measures of vorticity. Journal of Rational Mechanics Analysis, 2, 173-217. https://www.jstor. org/stable/24900328
Turcotte, D. L. (1989). Fractals in geology and geophysics. Pure and Applied Geophysics, 131(1-2), 171-196. https://doi.org/10.1007/bf00874486
Turcotte, D. L. (1997). Fractals and chaos in geology and geophysics (2nd ed.). Cambridge University Press. https://doi.org/10.1017/CBO9781139174695
Turner, F. J., & Weiss, L. E. (1963). Structural analysis of metamorphic tectonites. McGraw-Hill Book Company, Inc.
Twiss, R. J., & Unruh, J. R. (1998). Analysis of fault slip inversions: Do they constrain stress or strain rate? Journal of Geophysical Research: Solid Earth, 103(B6), 12205-12222. https://doi.org/10.1029/98JB00612
Uysal, T. I., Feng, Y., Zhao, J.-X., Altunel, E., Weatherley, D., Karabacak, V., Cengiz, O., Golding, S. D., Lawrence, M. G., & Collerson, K. D. (2007). U-series dating and geochemical tracing of late Quaternary travertine in co-seismic fissures. Earth and Planetary Science Letters, 257(3-4), 450-462. https://doi.org/10.1016/j.epsl.2007.03.004
Van Daele, J., Dewaele, S., Melcher, F., Onuk, P., Spikings, R., Glorie, S., Jepson, G., & Muchez, P. (2020). Geochronology of metamorphism, deformation and fluid circulation: A comparison between and Ar-Ar phyllosilicate and U-Pb apatite systematics in the Karagwe-Ankole Belt (Central Africa). Gondwana Research, 83, 279-297. https://doi.org/10.1016/j.gr.2020.02.008
Van der Pluijm, B. A., Hall, C. M., Vrolijk, Pevear, D. R., & Covey, M. C. (2001). The Dating of shallow faults in the Earth’s crust. Nature, 412(6843), 172-5. https://doi.org/10.1038/35084053
Van der Pluijm, B. A., Vrolijk, P. J., Pevear, D. R., Hall, C. M., & Solum, J. (2006). Fault dating in the Canadian Rocky Mountains: Evidence for late Cretaceous and early Eocene orogenic pulses. Geology, 34(10), 837-840. https://doi.org/10.1130/G22610.1
Van der Pluijm, V. A., Mezger, K., Cosca, M. A., & Essene, E. J. (1994). Determining the significance of high-grade shear zones by using temperature-time paths, with examples from the Grenville orogen. Geology, 22(8), 743-746. https://doi.org/10.1130/0091-7613(1994)022<0743:DTSOHG>2.3.CO;2
Vannucchi, P., Maltman, A., Bettelli, G., & Clennell, B. (2003). On the nature of scaly fabric and scaly clay. Journal of Structural Geology, 25(5), 673-688. https://doi.org/10.1016/S0191-8141(02)00066-4
Vauchez, A., Tommasi, A., & Mainprice, D. (2012). Fault (shear zones) in the Earth’s mantle. Tectonophysics, 558-559, 1-27. https://doi.org/10.1016/j.tecto.2012.06.006
Vega Granillo, R., Calmus, T., Meza Figueroa, D., Ruiz, J., Talavera Mendoza, O., & López Martínez, M. (2009). Structural and tectonic evolution of the Acatlán Complex, Southern Mexico: Its role in the collisional history of Laurentia and Gondwana. Tectonics, 28(4), TC4008. https://doi.org/10.1029/2007TC002159
Velandia, F. A. P. (2017). Cinemática de las fallas mayores del macizo de Santander: Énfasis en el modelo estructural y temporalidad al sur de la falla de Bucaramanga (Ph.D. thesis), Universidad Nacional de Colombia, Bogotá.
Verhaert, G., Muchez, P., Sintubin, M., Similox Tohon, D., Vandycke, S., & Waelkens, M. (2003). Reconstruction of neotectonic activity using carbonate precipitates: A case study from northwestern extremity of the Isparta Angle (SW Turkey). Journal of Geochemical Exploration, 78-79, 197-201. https://doi.org/10.1016/S0375-6742(03)00070-0
Vernon, R. H., & Clarke, G. L. (2008). Principles of metamorphic petrology. Cambridge University Press.
Vernon, R. H, Holdswoth, R. E., Selby, D., Dempsey, E., Finlay, A. J., & Fallick, A. E. (2014). Structural characteristics and Re-Os dating of quartz-pyrite veins in the Lewisian Gneiss Complex, NW Scotland: Evidence of an Early Paleoproterozoic hydrothermal regime during terrane amalgamation. Precambrian Research, 246, 256-267. https://doi.org/10.1016/j.precamres.2014.03.007
Ganerød, G. V., Braathen, A., & Willemoes Wissing, B. (2008). Predictive permeability model of extensional faults in crystalline and metamorphic rocks; verification by pre-grouting in sub-sea tunnels in Norway. Journal of Structural Geology, 30(8), 993-1004. https://doi.org/10.1016/j.jsg.2008.04.001
Villa, I. (2002). Isotopic closure. Terra Nova, 10(1), 42-47. https://doi.org/10.1046/j.1365-3121.1998.00156.x
Villa, I. M., Bucher, S., Bousquet, R., Kleinhanns, I. C., & Schmid, S. M. (2014). Dating polygenetic metamorphic assemblages along a transect across the Western Alps. Journal of Petrology, 55(4), 803-830. https://doi.org/10.1093/petrology/egu007
Vinasco, C., & Cordani, U. (2012). Reactivation episodes of the Romeral Fault System in the northwestern part of Central Andes, Colombia, through 39Ar-40Ar and K-Ar results. Boletín Ciencias de la Tierra, 32, 111-124.
Vinasco, C. J. (2001). A utilização da metodologia 40Ar-39Ar para o estudo de reativações tectônicas em zonas de cisalhamentos. Paradigma, O Falhamento de Romeral nos Andes Centrais de Colômbia (Master thesis). Universidade de São Paulo.
Viola, G., Scheiber, T., Fredin, O., Zwingmann, H., Margreth, A., & Knies, J. (2016). Deconvoluting complex structural histories archived in brittle fault zones. Nature Communications, 7, 13448. https://doi.org/10.1038/ncomms13448
Vissers, R. L. M., Van Hinsbergen, D. J. J., Wilkinson, C. M., & Ganerød, M. (2016). Middle Jurassic shear zones at Cap de Creus (eastern Pyrenees, Spain): A record of pre-drift extension of the Piemonte-Ligurian Ocean? Journal of the Geological Society, 174(2), 289-300. https://doi.org/10.1144/jgs2016-014
Vitale, S., & Mazzoli, S. (2008). Heterogeneous shear zone evolution: The role of shear strain hardening/softening. Journal Structural Geology, 30(11), 1383-1395. https://doi.org/10.1016/j.jsg.2008.07.006
Vrolijk, P., Pevear, D., Covey, M., & La Riviere, A. (2018). Fault gouge dating: History and evolution. Clay Minerals, 53(3), 305-324. https://doi.org/10.1180/clm.2018.22
Vrolijk, P., & van der Plujim, B. A. (1999). Clay gouge. Journal of Structural Geology, 21(8-9), 1039-1048. https://doi.org/10.1016/S0191-8141(99)00103-0
Wallace, R. (1951). Geometry of shearing stress and relation to faulting. The Journal of Geology, 59(2), 118-130. https://doi.org/10.1086/625831
Wallis, S. R. (1992). Vorticity analysis in a metachert from the Sanbagawa belt, SW Japan. Journal of Structural Geology, 14(3), 271-280. https://doi.org/10.1016/0191-8141(92)90085-B
Wang, B., Cluzel, D., Shu, L., Faure, M., Charvet, J., Chen, Y., Meffre, S., & Jong, K. (2009). Evolution of calc-alkaline to alkaline magmatism through Carboniferous convergence to Permian transcurrent tectonics, western Chinese Tianshan. International Journal of Earth Sciences, 98(6), 1275. https://doi.org/10.1007/s00531-008-0408-y
Wang, Y., Zwingmann, H., Zhou, L., Lo, C., Viola, G., & Hao, J. (2016). Direct dating of folding events by 40Ar/39Ar analysis of synkinematic muscovite from flexural-slip planes. Journal Structural Geology, 83, 46-59. https://doi.org/10.1016/j.jsg.2015.12.003
Watanabe, Y., Nakai, S. I., & Lin, A. (2008). Attempt to determine U-Th ages of calcite veins in the Nojima fault zone, Japan. Geochemical Journal, 42(6), 507-513. https://doi.org/0.2343/geochemj.42.507
Webb, L. E., Johnson, C. L., & Minjin, C. (2010). Late Triassic sinistral shear in the East Gobi Fault Zone, Mongolia. Tectonophysics, 495(3-4), 246-255. https://doi.org/10.1016/j.tecto.2010.09.033
Wells, M. L., Snee, L. W., & Blythe, A. E. (2000). Dating of major normal fault systems using western United States. Journal of Geophysical Research: Solid Earth, 105(B7), 16303-16327. https://doi.org/10.1029/2000JB900094
Wenk, H. R., Johnson, L. R., & Ratschbacher, L. (2000). Pseudotachylytes in the Eastern Peninsular Ridges of California. Tectonophysics, 321(2), 253-277. https://doi.org/10.1016/S0040-1951(00)00064-0
Wernicke, R. S., & Lippolt, H. J. (1997). (U+Th)-He evidence of Jurassic continuous hydrothermal activity in the Schwarzwald basement, Germany. Chemical Geology, 138(3-4), 273-285. https://doi.org/10.1016/S0009-2541(97)00020-X
White, S. H., Burrows, S. E., Carreras, J., Shaw, N. D., & Humphreys, F. J. (1980). On mylonites in ductile shear zones. Journal of Structural Geology, 2(1-2), 175-187. https://doi.org/https://doi.org/10.1016/0191-8141(80)90048-6
Whitmeyer, S. J. (2008). Dating fault fabrics using modern techniques of 40Ar/39Ar thermochronology: Evidence for Paleozoic deformation in the Eastern Sierras Pampeanas, Argentina. Journal of the Virtual Explorer, 30. https://doi.org/10.3809/jvirtex.2008.00207
Wibberley, C. A. J., Yielding, G., & Di Toro, G. (2008). Recent advances in the under-standing of fault zone internal structure: A review. In C. A. J. Wibberley, W. Kurz, J. Imber, R. E. Holdsworth, & C. Collettini (eds.), The internal structure of fault zones: Implications for mechanical and fluid-flow properties (pp. 5-33). Special Publication vol. 299. Geological Society of London. https://doi.org/10.1144/SP299.2
Winter, J. D. (2001). An introduction to igneous and metamorphic petrology. Prentice Hall.
Wise, D. U., Dunn, D. E., Engelder, J. T., Gieser, P. A., Hatcher, R. D., Kish, S. A., Odom, A. L., & Schamel, S. (1984). Fault-related rocks: Suggestions for terminology. Geology, 12(7), 391-394. https://doi.org/10.1130/0091-7613(1984)12<391:FRSFT>2.0.CO;2
Wolff, R., Dunkl, I., Kiesselbach, G., Wemmer, K., & Siegesmund, S. (2012). Thermochronological constraints on the multiphase exhumation history of the IvreaVerbano Zone of the Southern Alps. Tectonophysics, 579, 104-117. https://doi.org/10.1016/j.tecto.2012.03.019
Wolfler, A., Kurz, W., Danisik, M., & Rabitsch, R. (2010). Dating of fault zone activity by apatite fission track and apatite (U-Th)/He thermochronometry: A case study from the Lavanttal fault system (Eastern Alps). Terra Nova, 22(4), 274-282. https://doi.org/10.1111/j.1365-3121.2010.00943.x
Woodcock, N. H., & Mort, K. (2008). Classification of fault breccias and related fault rocks. Geological Magazine, 145(3), 435-440. https://doi.org/10.1017/S0016756808004883
Wu, F. T. (1978). Mineralogy and physical nature of clay gouge. Pure and Applied Geophysics, 116(4-5), 655-689. https://doi.org/10.1007/BF00876531
Xypolias, P. (2009). Some new aspects of kinematic vorticity analysis in naturally deformed quartzites. Journal of Structural Geology, 31(1), 3-10. https://doi.org/10.1016/j.jsg.2008.09.009
Xypolias, P. (2010). Vorticity analysis in shear zones: A review of methods and applications. Journal of Structural Geology, 32(12), 2072-2092. https://doi.org/10.1016/j.jsg.2010.08.009
Xypolias, P., Spanos, D., Chatzaras, V., Kokkalas, S., & Koukouvelas, I. (2010). Vorticity of flow in ductile thrust zones: Examples from the Attico-Cycladic Massif (Internal Hellenides, Greece). In R. D. Law, R. W. H. Butler, R. E. Holdsworth, M. Krabbendam, & R. A. Strachan (eds.), Continental tectonics and mountain building: The legacy of Peach and Horne (pp. 687-714). Special Publications vol. 335. Geological Society of London. https://doi.org/10.1144/SP335.28
Xypolias, P., & Kokkalas, S. (2006). Heterogeneous ductile deformation along a mid-crustal extruding shear zone: An example from the External Hellenides (Greece) (pp. 497-516). Special Publications vol. 268. Geological Society of London. https://doi.org/10.1144/GSL.SP.2006.268.01.23
Žalohar, J. (2014). T-Tecto Studio X5. Integrated software for structural analysis of earthquake focal-machanism and fault-slip data. Introductory tutorial.
Zaun, P. E., & Wagner G. A. (1985). Fission-track stability in zircons under geological conditions. Nuclear Tracks and Radiation Measurements, 10(3), 303-307. https://doi.org/10.1016/0735-245X(85)90119-X
Zulauf, G. (2001). Structural style, deformation mechanisms and paleodifferential stress along an exposed crustal section: Constraints on the rheology of quartzofeldspathic rocks at supra-and infrastructural levels (Bohemian Massif). Tectonophysics, 332(1-2), 211-237. https://doi.org/10.1016/S0040-1951(00)00258-4
Zuluaga, C., Stowell, H., & Tinkham, D. (2006). Thermodynamic modeling: A tool for understanding phase equilibria & metamorphic processes. A workshop manual.
Zwingmann, H., & Mancktelow, N. S. (2004). Timing of Alpine fault gouges. Earth and Planetary Science Letters, 223(3-4), 415-425. https://doi.org/10.1016/j.epsl.2004.04.041