Relevant aspects to the recognition of extensional environments in the field
DOI:
https://doi.org/10.32685/0120-1425/bol.geol.48.2.2021.543Keywords:
Normal fault, deformation, stress, extensional environmentLicense
Copyright (c) 2021 Servicio Geológico Colombiano
![Creative Commons License](http://i.creativecommons.org/l/by/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution 4.0 International License.
Downloads
How to Cite
Issue
Section
Published
Abstract
The understanding of each geological-structural aspect in the field is fundamental to be able to reconstruct the geological history of a region and to give a geological meaning to the data acquired in the outcrop. The description of a brittle extensional environment, which is dominated by normal fault systems, is based on: (I) image interpretation, which aims to find evidence suggestive of an extensional geological environment, such as the presence of scarp lines and fault scarps, horst, graben and/or half-graben, among others, that allow the identification of the footwall and hanging wall blocks; ii) definition of the sites of interest for testing; and iii) analysis of the outcrops, following a systematic procedure that consists of the observation and identification of the deformation markers, their three-dimensional schematic representation, and their subsequent interpretation, including the stereographic representation in the outcrop. This procedure implies the unification of the parameters of structural data acquisition in the field, mentioning the minimum fields necessary for the registration of the data in tables. Additionally, the integration of geological and structural observations of the outcrop allows to understand the nature of the geological units, the deformation related to the extensional environment and the regional tectonic context of the study area.
Author Biographies
Ana Milena Suárez Arias, Dirección de Geociencias Básicas, Servicio Geológico Colombiano, Bogotá, Colombia
Geologist MSc in Earth Science. Interested in the structure and deformation of the earth's crust, geomorphology, geological hazards, and geodynamic processes at a local and regional level.
Julián Andrés López Isaza, Dirección de Geociencias Básicas, Servicio Geológico Colombiano, Bogotá, Colombia
Geol. MSc. PhD (c), Coordinator of the Tectonics Research Group. Interested in igneous and metamorphic processes, structural analysis of polydeformed areas, and tectonic and geodynamic modeling applied to tectonic-metallogenic environment
Anny Juieth Forero Ortega, Dirección de Geociencias Básicas, Servicio Geológico Colombiano, Bogotá, Colombia
Geologist MSc, researcher at the Universidad Javeriana and the Universidad de Caldas. With experience in structural and tectonic geology and interest in the area of microstructural and metamorphic petrography.
Mario Andrés Cuéllar Cárdenas, Dirección de Geociencias Básicas, Servicio Geológico Colombiano, Bogotá, Colombia
Geol. MSc. PhD. Technical Director of Basic Geosciences. Interested in tectonic and geodynamic modeling, deformation analysis and geological-structural mapping.
Carlos Augusto Quiroz Prada, Dirección de Geociencias Básicas, Servicio Geológico Colombiano, Bogotá, Colombia
Geologist MSc, doctoral student at the Universidad Nacional Autónoma de México. Interested in the petrogenetic evolution of regional magmatism and its relationship with mineral deposits.
Lina María Cetina Tarazona, Dirección de Geociencias Básicas, Servicio Geológico Colombiano, Bogotá, Colombia
Geologist, MSc and PhD student at the Universidade de São Paulo. Her research interest are igneous petrology, regional geology and tectonics.
Oscar Freddy Muñoz Rodríguez, Dirección de Geociencias Básicas, Servicio Geológico Colombiano, Bogotá, Colombia
Geol. MSc(c). Integrante del grupo de investigaciones en tectónica del Servicio Geológico Colombiano. Con experiencia en exploración de yacimientos minerales, conocimientos en geología estructural a diferentes escalas, interesado en el desarrollo de modelos regionales íntegros de evolución tectónica.
Luis Miguel Aguirre Hoyos, Dirección de Geociencias Básicas, Servicio Geológico Colombiano, Bogotá, Colombia
Geologist, member of the Tectonics Research Group of the Servicio Geológico Colombiano. Interested in studies of active tectonics, structural geology and paleoseismology.
Nelson Ricardo López Herrera, Dirección de Geociencias Básicas, Servicio Geológico Colombiano, Bogotá, Colombia
Geologist, MSc. in Geographic Information Systems, specialist in Statistics and in Project Management. Interested in geomatics, remote sensing, and morphometry as a tool for neotectonics research.
References
Allmendinger, R.W. (2017). Modern Structural Practice. A structural geology laboratory manual for the 21st Century. V.1.7.0. http://www.geo.cornell.edu/geology/faculty/RWA/structure-lab-manual/.
Anderson, E. M. (1951). The dynamics of faulting and dike formation with application to Britain. Oliver and Boyd.
Angelier, J. (1984). Tectonic analysis of fault slip data sets. Journal of Geophysical Research: Solid Earth, 89(B7), 5835-5848. https://doi.org/10.1029/JB089iB07p05835.
Angelier, J. (1990). Inversion of field data in fault tectonics to obtain the regional stress-III. A new rapid direct inversion method by analytical means. Geophysical Journal International, 103(2), 363-373. https://doi.org/10.1111/j.1365-246X.1990.tb01777.x
Axen, G. (1988). The geometry of planar domino-style normal faults above a dipping basal detachment. Journal of Structural Geology, 10(4), 405-411. https://doi.org/10.1016/0191-8141(88)90018-1.
Batiza, R. (1996). Magmatic segmentation of mid-ocean ridges: a review. In C. J. MacLeod, P. A. Tyler, & C. L. Walker (eds.), Tectonic, Magmatic, Hydrothermal and Biological Segmentation of Mid-Ocean Ridges (pp. 103-130). Special Publications 118. Geological Society.
Bull, W. B. (2008). Tectonic geomorphology of mountains: a new approach to paleoseismology. John Wiley & Sons.
Burbank, D. W., & Anderson, R. S. (2011). Tectonic geomorphology. John Wiley & Sons.
Corti, G. (2009). Continental rift evolution: from rift initiation to incipient break-up in the Main Ethiopian Rift, East Africa. Earth-Science Reviews, 96(1-2), 1-53. https://doi.org/10.1016/j.earscirev.2009.06.005
Cowie, P. A. (1998). A healing-reloading feedback control on the growth rate of seismogenic faults. Journal of Structural Geology, 20(8), 1075-1087. https://doi.org/10.1016/S0191-8141(98)00034-0.
Cowie, P. A., Gupta, S., & Dawers, N. H. (2000). Implications of fault array evolution for synrift depocentre development: insights from a numerical fault growth model. Basin Research, 12(3-4), 241-261. https://doi.org/10.1111/j.1365-2117.2000.00126.x
Dickinson, W. R. (2002). The Basin and Range Province as a composite extensional domain. International Geology Review, 44(1), 1-38. https://doi.org/10.2747/0020-6814.44.1.1
Doblas, M. (1998). Slickenside kinematic indicators. Tectonophysics, 295(1-2), 187-197. https://doi.org/10.1016/S0040-1951(98)00120-6
Doblas, M., Mahecha, V., Hoyos, M., & López-Ruiz, J. (1997). Slickenside and fault surface kinematic indicators on active normal faults of the Alpine Betic cordilleras, Granada, southern Spain. Journal of Structural Geology, 19(2), 159-170. https://doi.org/10.1016/S0191-8141(96)00086-7
Faulds, J. E., & Varga, R. J. (1998). The role of accommodation zones and transfer zones in the regional segmentation of extended terranes. Geological Society of America, Special Papers, 323, 1-45. https://doi.org/10.1130/SPE323
Forero-Ortega, A. J., López-Isaza, J. A., López Herrera, N. R., Cuéllar-Cárdenas, M. A., Cetina Tarazona, L. M., & Aguirre Hoyos, L. M. (2021). Geological-structural mapping and geochronology of shear zones: A methodological proposal. Boletín Geológico, 48(1), 81-122. https://doi.org/10.32685/0120-1425/bol.geol.48.1.2021.524
Fossen, H. (2010). Structural geology. Cambridge University Press.
Fossen, H., & Cavalcante, G. C. G. (2017). Shear zones - A review. Earth-Science Reviews, 171, 434-455. https://doi.org/10.1016/j.earscirev.2017.05.002.
Frisch, W., Meschede, M., & Blakey, R. (2011). Plate Tectonics: Continental drift and mountain building. Springer.
Groshong Jr, R. H. (1999). 3D structural geology: a practical guide to surface and subsurface map interpretation. Springer.
Gupta, A., & Scholz, C. H. (2000). A model of normal fault interaction based on observations and theory. Journal of Structural Geology, 22, 865-879. https://doi.org/10.1016/S0191-8141(00)00011-0.
Hatcher Jr. R. D. (1995). Structural geology. Principle, concepts and problems. Prentice Hall.
Hollocher, K. (2014). A pictorial guide to metamorphic rocks in the field. CRC Press.
Huggett, R. (2007). Fundamentals of geomorphology. Routledge.
Hus, R., Acocella, V., Funiciello, R., & De Batist, M. (2005). Sandbox models of relay ramp structure and evolution. Journal of Structural Geology, 27(3), 459-473. https://doi.org/10.1016/j.jsg.2004.09.004
Jerram, D., & Petford, N. (2011). The field description of igneous rocks. John Wiley & Sons.
Jiang, D., & White, J. C. (1995). Kinematic of rock flow and the interpretation of geological structures, with particular reference to shear zones. Journal of Structural Geology, 17(9), 1249-1265. https://doi.org/10.1016/0191-8141(95)00026-A
Lisle, R. J., & Walker, R. J. (2013). The estimation of fault slip from map data: The separation-pitch diagram. Tectonophysics, 583, 158-163. https://doi.org/10.1016/j.tecto.2012.10.034.
López Isaza, J. A., Cuéllar Cárdenas, M. A., Cetina Tarazona, L. M., Forero Ortega, A. J., Suárez Arias, A. M., Muñoz Rodríguez, O. F., Aguirre Hoyos, L. M., & Gutiérrez López, M. J. (2021). Graphical representation of structural data in the field: A methodological proposal for its application in deformed areas. Boletín Geológico, 48(1), 123-139. https://doi.org/10.32685/0120-1425/bol.geol.48.1.2021.504
Marrett, R., & Allmendinger, R. W. (1990). Kinematic analysis of fault-slip data. Journal of Structural Geology, 12(8), 973-986. https://doi.org/10.1016/0191-8141(90)90093-E
McCalpin, J. P. (2009). Paleoseismology. Academic Press.
McClay, K. R. (1987). The mapping of geological structures. John Wiley & Sons.
Means, W. D. (1976). Stress and Strain. Basic concepts of continuum mechanics for geologists. Springer-Verlag.
Mitra, G., & Marshak, S. (1988). Basic methods of structural geology. Prentice Hall.
Moores, E., & Twiss, R. (2000). Tectonics. W. H. Freeman and Company.
Muraoka, H., & Kamata, H. (1983). Displacement distribution along minor fault traces. Journal of Structural Geology, 5(5), 483-495. https://doi.org/10.1016/0191-8141(83)90054-8.
Peacock, D. C., Knipe, R. J., & Sanderson, D. J. (2000). Glossary of normal faults. Journal of Structural Geology, 22(3), 291-305. https://doi.org/10.1016/S0191-8141(00)80102-9
Peacock, D. C. P., & Sanderson, D. J. (1991). Displacements, segment linkage and relay ramps in normal fault zones. Journal of Structural Geology, 13(6), 721-733. https://doi.org/10.1016/0191-8141(91)90054-M.
Petit, J. P. (1987). Criteria for the sense of movement on fault surfaces in brittle rocks. Journal of Structural Geology, 9(5-6), 597-608. https://doi.org/10.1016/0191-8141(87)90145-3.
Pollard, D., & Fletcher, R. C. (2005). Fundamentals of structural geology. Cambridge University Press.
Ragan, D. M. (2009). Structural geology. An introduction to geometrical techniques. Cambridge University Press.
Ramsay, J. G., & Huber M. I. (1983). The techniques of modern structural geology. Volume 1: Strain Analysis. Academic Press.
Ramsay, J. G., & Huber M. I. (1986). The techniques of modern structural geology. Volume 2: Folds and Fractures. Academic Press.
Ramsay, J. G., & Lisle, R. J. (2000). The techniques of modern structural geology. Volume 3: Applications of continuum mechanics in structural geology. Academic Press.
Sibson, R. H. (1977). Fault rocks and fault mechanisms. Journal of the Geological Society, 133, 191-213.
Sibson, R. H. (1980). Transient discontinuities in ductile shear zones. Journal of Structural Geology, 2(1-2), 165-171.
Simpson, R. W. (1997). Quantifying Anderson's fault types. Journal of Geophysical Research: Solid Earth, 102(B8), 17909-17919.
Stewart, S. A. (2001). Displacement distributions on extensional faults: Implications for fault stretch, linkage, and seal. AAPG Bulletin, 85(4), 587-599. https://doi.org/10.1306/8626C951-173B-11D7-8645000102C1865D
Stewart, S. A., & Argent, J. D. (2000). Relationship between polarity between extensional fault arrays and presence of detachments. Journal of Structural Geology, 22(6), 693-711. https://doi.org/10.1016/S0191-8141(00)00004-3
Stow, D. A. (2005). Sedimentary Rocks in the Field: A color guide. Gulf Professional Publishing.
Sugden, T. (1987). Kinematic indicators: structures that record the sense of movement in mountain chains. Geology Today, 3(3-4), 93-99. https://doi.org/10.1111/j.1365-2451.1987.tb00496.x
Tanner, D., & Brandes, C. (2020). Understanding Faults: Detecting, Dating, and Modeling. Elsevier. https://doi.org/10.1016/C2017-0-03320-7
Twiss, R. J., & Moores, E. M. (2007). Structural geology. W. H. Freeman and Company.
Van der Pluijm, B. A., & Marshak, S. (2004). Earth Structure. An introduction to structural geology and Tectonics. W. W. Norton & Company.
Walsh, J. J., Nicol, A., & Childs, C. (2002). An alternative model for the growth of faults. Journal of Structural Geology, 24(11), 1669-1675. https://doi.org/10.1016/S0191-8141(01)00165-1
Xu, S., Nieto-Samaniego, A. F., & Alaniz-Álvarez, S. A. (2004). Tilting mechanism in domino faults of the Sierra de San Miguelito, Central Mexico. Geologica Acta, 3, 189-201. https://doi.org/10.1344/105.000001426
Xu, S., Nieto-Samaniego, A. F., & Alaniz-Álvarez, S. A. (2009). Quantification of true displacement using apparent displacement along an arbitrary line on a fault plane. Tectonophysics, 467(1-4), 107-118. https://doi.org/10.1016/j.tecto.2008.12.004
Xu, S. S., Nieto-Samaniego, A. F., & Alaniz-Álvarez, S. A. (2014). Estimation of average to maximum displacement ratio by using fault displacement-distance profiles. Tectonophysics, 636, 190-200. https://doi.org/10.1016/j.tecto.2014.08.023.
Yamada E., & Sakaguchi, K. (1994). Fault-slip calculation from separations. Journal of Structural Geology, 17(7), 1065-1070. https://doi.org/10.1016/0191-8141(95)00003-V
Yoon, S. H., Sohn, Y. K., & Chough, S. K. (2014). Tectonic, sedimentary, and volcanic evolution of a back-arc basin in the East Sea (Sea of Japan). Marine Geology, 352, 70-88. https://doi.org/10.1016/j.margeo.2014.03.004.