Listvenites: new insights of a hydrothermal system fossilized in Cerro Matoso peridotites, Montelíbano, Córdoba Department, Colombia
DOI:
https://doi.org/10.32685/0120-1425/boletingeo.47.2020.492Keywords:
Listvenite, metasomatism, hydrothermal systems, Cerro Matoso, spinelDownloads
How to Cite
Issue
Section
Published
Abstract
The products of metasomatic alteration (e.g., carbonation) of peridotites are called listvenites. Based on a description of the outcrops in the laterite deposit at Cerro Matoso located in the NW of Colombia, the mineralogical composition confirmed by petrography, and a chemical analysis performed with XRF and WDS/EDS, the previous unit called tachylite is redefined as listvenite. Two types of listvenites are described: listvenite A, with the mineralogical association of quartz + siderite + phyllosilicates + goethite +/- magnetite, and listvenite B, with the association of siderite + phyllosilicates + goethite. Cr-spinel relics accompanied by Mn-siderite and neoblastic textures, indicate their origin from peridotites, where Mn-Fe would have been deposited by hydrothermal fluids. Hydrothermal reducing environments with alkaline fluids and low temperatures should have favored the formation of listvenites that are observed along a fracture zone, oriented WNW-ESE at Pit-1 in Cerro Matoso. Due to exposure to climatic conditions since the Eocene, but definitively since the last Andean Orogeny, listvenites were affected, like all the rocks in the Cerro Matoso deposit, by intense supergene weathering and leaching processes, which could make their true origin unclear.
References
Abuamarah, B. A. (2020). Geochemistry and fore-arc evolution of upper mantle peridotites in the Cryogenian Bir Umq ophiolite, Arabian Shield, Saudi Arabia. International Geology Review, 62(5), 630-648. https://doi.org/10.1080/00206814.2019.1652942
Aftabi, A., & Zarrinkoub, M. H. (2013). Petrogeochemistry of listvenite association in metaophiolites of Sahlabad region, eastern Iran: Implications for possible epigenetic Cu-Au ore exploration in metaophiolites. Lithos, 156-159, 186-203. https://doi.org/10.1016/j.lithos.2012.11.006
Ash, C. H., & Arksey, R. L. (1991). The listwaenites-lode gold association in British Columbia. Geological Fieldwork 1989, paper 1990-1991.
Ash, C. H. (2001). Relationship between ophiolites and gold-quartz veins in the North American Cordillera. Bulletin 108. British Columbia, Ministry of Energy and Mines.
Auclair, M., Gauthier, M., Trottier, J., Jébrak, M., & Chartrand, F. (1993). Mineralogy, geochemistry, and paragenesis of the Eastern Metals serpentinite-associated Ni-Cu-Zn deposit, Quebec Appalachians. Economic Geology, 88(1), 123-138. https://doi.org/10.2113/gsecongeo.88.1.123
Aydal, D. (1989). Gold-bearing listwanites in Arac Massif, Kastamonu, Turkey. Terra Nova, 2(1), 43-52. https://doi.org/10.1111/j.1365-3121.1990.tb00035.x
Azer, M. K. (2013). Evolution and economic significance of listwaenites associated with Neoproterozoic ophiolites in South Eastern Desert, Egypt. Geologica Acta, 11(1), 113-128. https://doi.org/10.1344/105.000001777
Barnes, I., O'Neil, J. R., Rapp, J. B., & White, D. E. (1973). Silica-carbonate alteration of serpentine: wall rock alterations in mercury deposits of the California Coast Ranges. Economic Geology, 68(3), 388-398. https://doi.org/10.2113/gsecongeo.68.3.388
Barrero, D. (1974). Metamorfismo regional en el Occidente Colombiano. Simposio sobre ofiolitas Medellín, Colombia, Medellín.
Bates, R., & Jackson, J. (1987). Glossary of Geology (Third Ed.). American Geological Institute.
Boskabadi, A., Pitcairn, I. K., Broman, C., Boyce, A., Teagle, D. A. H., Cooper, M. J., Azer, M. K., Mohamed, F. H., Stern, R. J., & Majka, J. (2017). Carbonate alteration of ophiolitic rocks in the Arabian-Nubian Shield of Egypt: sources and compositions of the carbonating fluid and implications for the formation of Au deposits. International Geology Review, 59(4), 391-419. https://doi.org/10.1080/00206814.2016.1227281
Bucher, K., & Stober, I. (2019). Interaction of Mantle Rocks with Crustal Fluids: Sagvandites of the Scandinavian Caledonides. Journal of Earth Science, 30, 1084-1094. https://doi.org/10.1007/s12583-019-1257-2
Buisson, G., & Leblanc, M. (1987). Gold in mantle peridotites from Upper Proterozoic ophiolites in Arabia, Mali, and Morocco. Economic Geology, 82(8), 2092-2097. https://doi.org/10.2113/gsecongeo.82.8.2091
Capedri, S., & Rossi, A. (1973). Conditions governing the formation of ophicalcites and listwaenites (Central Euboea/ Greece). Bulletin of Geological Society of Greece, 10(2), pp. 78-297.
Castrillón, A. (2013). Determinación de las estructuras tubulares presentes en el Pit 6 en el depósito laterítico de níquel de Cerro Matoso (Master thesis). Universidad Nacional de Colombia.
Castrillón, A. (2019). Carbonatos y otros minerales autigénicos asociados a las lateritas niquelíferas de Cerro Matoso y su posible relación con actividad hidrotermal y reducción de sulfatos (Doctoral Thesis) Universidad Nacional de Colombia.
Dekov, V. M., & Savelli, C. (2004). Hydrothermal activity in the SE Tyrrhenian Sea: an overview of 30 years of research. Marine Geology, 204(1-2), 161-185. https://doi.org/10.1016/S0025-3227(03)00355-4
Demoustier, A. (1995). Contribution ala caractérisation des quartz auriferes de la région de Cabo de Gata, province d'Almería, Espagne. Pétrographie-thermoluminescence-inclusions fluides. Travail de fin d'études, Faculté Polytechnique de Mons.
Demoustier, A., & Castroviejo, R. (1997). Fluid inclusion characterization of the Carneros epithermal ores (Cabo de Gata, Almería, SE Spain): preliminary results. XIV ECROFI (European Current Research on Fluid Inclusions), Nancy, France.
Demoustier, A., Castroviejo, R., & Charlett, J. M. (1998). Clasificación textural del cuarzo epitermal (Au-Ag) de relleno filoniano del area volcánica de Cabo de Gata, Almeria. Boletín Geológico y Minero, 109(5-6), 449-468.
Gahlan, H. A., Azer, M. K., & Asimow, P. D. (2018). On the relative timing of listwaenite formation and chromian spinel equilibration in serpentinites. American Mineralogist, 103(7), 1087-1102. https://doi.org/10.2138/am-2018-6473
Gaudin, A., Decarreau, A., Noack, Y., & Grauby, O. (2005). Clay mineralogy of the nickel laterite ore developed from serpentinised peridotites at Murrin Murrin, Western Australia. Australian Journal of Earth Sciences, 52(2), 231-241. https://doi.org/10.1080/08120090500139406
Gleeson, S., Herrington, R., Durango, J., & Velazquez, C. (2004). The Mineralogy and Geochemistry of the Cerro Matoso S.A. Ni Laterite Deposit, Montelíbano, Córdoba. Economic Geology, 99(6), 1197-1213. https://doi.org/10.2113/gsecongeo.99.6.1197
Gonçalves, C., Fabris, J., & Pacheco Serrano, W. (1999). Chemical and mineralogical analyses of a weathering mantle developing on peridotite of the mining area for nickel in Cerro Matoso, Colombia. Hyperfine Interactions, 122, 171-176. https://doi.org/10.1023/A:1012658009195
Halls, C., & Zhao, R. (1995). Listvenite and related rocks: perspectives on terminology and mineralogy with reference to an occurrence at Cregganbaun, Co. Mayo, Republic of Ireland. Mineralium Deposita, 30(3-4), 303-313. https://doi.org/10.1007/BF00196366
Imamalipour, A., Karimlou, M., & Hajalilo, B. (2018). Geochemical zonality coefficients in the primary halo of Tavreh mercury prospect, northwestern Iran: implications for exploration of listwaenitic type mercury deposits. Geochemistry: loration, Environment, Analysis, 19(4), 347-357. https://doi.org/10.1144/geochem2018-048
Jutras, J., & Geol, P. (2002). Ultramafic nickel-bearing magmas of the Nadaleen river area (106C/3) and associated listwaenites: new exploration targets in Mayo Mining District, Yukon. In D. Emond, & L. Lewis, Exploration and Geological Service Division, Yukon Region, Indian and Northerb Affairs, Canada. Manson Creek Resources Ltda.
Kashkai, M., & Allakverdiev, S. (1965). Listwaenites, their origin and classification. (U. G. Survey, Ed.) Baku, Izdat. Akad, Nauk Azerbaidzhanskoi: Translated by Vi-taliano, D.B.
Kelemen, P. B., & Matter, J. M. (2008). In situ carbonation of peridotite for CO2 storage. PNAS, 105(45), 17295-17300. https://doi.org/10.1073/pnas.0805794105
Kelley, D. S., & Shank, T. M. (2010). Hydrothermal systems: a decade of discovery in slow spreading environments. In P.a. Rona, C.w. Devey, J. Dyment, & B.j. Murton (Eds.), Diversity Of Hydrothermal Systems On Slow-Spreading Ocean Ridges. Agu Geophysical Monograph Series. https://doi.org/10.1029/2010Gm000945
Kim, S-T., Mucci, A., & Taylor, B. E. (2007). Phosphoric acid fractionation factors for calcite and aragonite between 25 and 75 °C: Revisited. Chemical Geology, 246(3-4), 135-146. https://doi.org/10.1016/j.chemgeo.2007.08.005
Kishida, A., & Kerrich, R. (1987). Hydrothermal alteration zoning and gold concentration at the Kerr-Addison Archean lode gold deposit, Kirkland Lake, Ontario. Economic Geology, 82(3), 649-690. https://doi.org/10.2113/gsecongeo.82.3.649
Koc, S., & Kadioglu, Y. K. (1996). Mineralogy, geochemistry, and precious metal content of Karacakaya (Yunusemre-Eskisehir) Listwaenites. Ofioliti, 21(2), 125-130.
Leblanc, M. (1991). Platinum-group elements and gold in ophiolitic complexes: distribution and fractionation from mantle to oceanic floor. In T. Peters, A. Nicolas, & R. Coleman, Ophiolite Genesis and Evolution of the Oceanic Lithosphere. Springer. https://doi.org/10.1007/978-94-011-3358-6_13