Listvenites: new insights of a hydrothermal system fossilized in Cerro Matoso peridotites, Montelíbano, Córdoba Department, Colombia

Authors

DOI:

https://doi.org/10.32685/0120-1425/boletingeo.47.2020.492

Keywords:

Listvenite, metasomatism, hydrothermal systems, Cerro Matoso, spinel

Downloads

How to Cite

Castrillón, A., & Guerrero, J. (2020). Listvenites: new insights of a hydrothermal system fossilized in Cerro Matoso peridotites, Montelíbano, Córdoba Department, Colombia. Boletín Geológico, (47), 67–84. https://doi.org/10.32685/0120-1425/boletingeo.47.2020.492

Issue

Section

Articles

Published

2020-12-23

Abstract

The products of metasomatic alteration (e.g., carbonation) of peridotites are called listvenites. Based on a description of the outcrops in the laterite deposit at Cerro Matoso located in the NW of Colombia, the mineralogical composition confirmed by petrography, and a chemical analysis performed with XRF and WDS/EDS, the previous unit called tachylite is redefined as listvenite. Two types of listvenites are described: listvenite A, with the mineralogical association of quartz + siderite + phyllosilicates + goethite +/- magnetite, and listvenite B, with the association of siderite + phyllosilicates + goethite. Cr-spinel relics accompanied by Mn-siderite and neoblastic textures, indicate their origin from peridotites, where Mn-Fe would have been deposited by hydrothermal fluids. Hydrothermal reducing environments with alkaline fluids and low temperatures should have favored the formation of listvenites that are observed along a fracture zone, oriented WNW-ESE at Pit-1 in Cerro Matoso. Due to exposure to climatic conditions since the Eocene, but definitively since the last Andean Orogeny, listvenites were affected, like all the rocks in the Cerro Matoso deposit, by intense supergene weathering and leaching processes, which could make their true origin unclear.

References

Abuamarah, B. A. (2020). Geochemistry and fore-arc evolution of upper mantle peridotites in the Cryogenian Bir Umq ophiolite, Arabian Shield, Saudi Arabia. International Geology Review, 62(5), 630-648. https://doi.org/10.1080/00206814.2019.1652942

Aftabi, A., & Zarrinkoub, M. H. (2013). Petrogeochemistry of listvenite association in metaophiolites of Sahlabad region, eastern Iran: Implications for possible epigenetic Cu-Au ore exploration in metaophiolites. Lithos, 156-159, 186-203. https://doi.org/10.1016/j.lithos.2012.11.006

Ash, C. H., & Arksey, R. L. (1991). The listwaenites-lode gold association in British Columbia. Geological Fieldwork 1989, paper 1990-1991.

Ash, C. H. (2001). Relationship between ophiolites and gold-quartz veins in the North American Cordillera. Bulletin 108. British Columbia, Ministry of Energy and Mines.

Auclair, M., Gauthier, M., Trottier, J., Jébrak, M., & Chartrand, F. (1993). Mineralogy, geochemistry, and paragenesis of the Eastern Metals serpentinite-associated Ni-Cu-Zn deposit, Quebec Appalachians. Economic Geology, 88(1), 123-138. https://doi.org/10.2113/gsecongeo.88.1.123

Aydal, D. (1989). Gold-bearing listwanites in Arac Massif, Kastamonu, Turkey. Terra Nova, 2(1), 43-52. https://doi.org/10.1111/j.1365-3121.1990.tb00035.x

Azer, M. K. (2013). Evolution and economic significance of listwaenites associated with Neoproterozoic ophiolites in South Eastern Desert, Egypt. Geologica Acta, 11(1), 113-128. https://doi.org/10.1344/105.000001777

Barnes, I., O'Neil, J. R., Rapp, J. B., & White, D. E. (1973). Silica-carbonate alteration of serpentine: wall rock alterations in mercury deposits of the California Coast Ranges. Economic Geology, 68(3), 388-398. https://doi.org/10.2113/gsecongeo.68.3.388

Barrero, D. (1974). Metamorfismo regional en el Occidente Colombiano. Simposio sobre ofiolitas Medellín, Colombia, Medellín.

Bates, R., & Jackson, J. (1987). Glossary of Geology (Third Ed.). American Geological Institute.

Boskabadi, A., Pitcairn, I. K., Broman, C., Boyce, A., Teagle, D. A. H., Cooper, M. J., Azer, M. K., Mohamed, F. H., Stern, R. J., & Majka, J. (2017). Carbonate alteration of ophiolitic rocks in the Arabian-Nubian Shield of Egypt: sources and compositions of the carbonating fluid and implications for the formation of Au deposits. International Geology Review, 59(4), 391-419. https://doi.org/10.1080/00206814.2016.1227281

Bucher, K., & Stober, I. (2019). Interaction of Mantle Rocks with Crustal Fluids: Sagvandites of the Scandinavian Caledonides. Journal of Earth Science, 30, 1084-1094. https://doi.org/10.1007/s12583-019-1257-2

Buisson, G., & Leblanc, M. (1987). Gold in mantle peridotites from Upper Proterozoic ophiolites in Arabia, Mali, and Morocco. Economic Geology, 82(8), 2092-2097. https://doi.org/10.2113/gsecongeo.82.8.2091

Capedri, S., & Rossi, A. (1973). Conditions governing the formation of ophicalcites and listwaenites (Central Euboea/ Greece). Bulletin of Geological Society of Greece, 10(2), pp. 78-297.

Castrillón, A. (2013). Determinación de las estructuras tubulares presentes en el Pit 6 en el depósito laterítico de níquel de Cerro Matoso (Master thesis). Universidad Nacional de Colombia.

Castrillón, A. (2019). Carbonatos y otros minerales autigénicos asociados a las lateritas niquelíferas de Cerro Matoso y su posible relación con actividad hidrotermal y reducción de sulfatos (Doctoral Thesis) Universidad Nacional de Colombia.

Dekov, V. M., & Savelli, C. (2004). Hydrothermal activity in the SE Tyrrhenian Sea: an overview of 30 years of research. Marine Geology, 204(1-2), 161-185. https://doi.org/10.1016/S0025-3227(03)00355-4

Demoustier, A. (1995). Contribution ala caractérisation des quartz auriferes de la région de Cabo de Gata, province d'Almería, Espagne. Pétrographie-thermoluminescence-inclusions fluides. Travail de fin d'études, Faculté Polytechnique de Mons.

Demoustier, A., & Castroviejo, R. (1997). Fluid inclusion characterization of the Carneros epithermal ores (Cabo de Gata, Almería, SE Spain): preliminary results. XIV ECROFI (European Current Research on Fluid Inclusions), Nancy, France.

Demoustier, A., Castroviejo, R., & Charlett, J. M. (1998). Clasificación textural del cuarzo epitermal (Au-Ag) de relleno filoniano del area volcánica de Cabo de Gata, Almeria. Boletín Geológico y Minero, 109(5-6), 449-468.

Gahlan, H. A., Azer, M. K., & Asimow, P. D. (2018). On the relative timing of listwaenite formation and chromian spinel equilibration in serpentinites. American Mineralogist, 103(7), 1087-1102. https://doi.org/10.2138/am-2018-6473

Gaudin, A., Decarreau, A., Noack, Y., & Grauby, O. (2005). Clay mineralogy of the nickel laterite ore developed from serpentinised peridotites at Murrin Murrin, Western Australia. Australian Journal of Earth Sciences, 52(2), 231-241. https://doi.org/10.1080/08120090500139406

Gleeson, S., Herrington, R., Durango, J., & Velazquez, C. (2004). The Mineralogy and Geochemistry of the Cerro Matoso S.A. Ni Laterite Deposit, Montelíbano, Córdoba. Economic Geology, 99(6), 1197-1213. https://doi.org/10.2113/gsecongeo.99.6.1197

Gonçalves, C., Fabris, J., & Pacheco Serrano, W. (1999). Chemical and mineralogical analyses of a weathering mantle developing on peridotite of the mining area for nickel in Cerro Matoso, Colombia. Hyperfine Interactions, 122, 171-176. https://doi.org/10.1023/A:1012658009195

Halls, C., & Zhao, R. (1995). Listvenite and related rocks: perspectives on terminology and mineralogy with reference to an occurrence at Cregganbaun, Co. Mayo, Republic of Ireland. Mineralium Deposita, 30(3-4), 303-313. https://doi.org/10.1007/BF00196366

Imamalipour, A., Karimlou, M., & Hajalilo, B. (2018). Geochemical zonality coefficients in the primary halo of Tavreh mercury prospect, northwestern Iran: implications for exploration of listwaenitic type mercury deposits. Geochemistry: loration, Environment, Analysis, 19(4), 347-357. https://doi.org/10.1144/geochem2018-048

Jutras, J., & Geol, P. (2002). Ultramafic nickel-bearing magmas of the Nadaleen river area (106C/3) and associated listwaenites: new exploration targets in Mayo Mining District, Yukon. In D. Emond, & L. Lewis, Exploration and Geological Service Division, Yukon Region, Indian and Northerb Affairs, Canada. Manson Creek Resources Ltda.

Kashkai, M., & Allakverdiev, S. (1965). Listwaenites, their origin and classification. (U. G. Survey, Ed.) Baku, Izdat. Akad, Nauk Azerbaidzhanskoi: Translated by Vi-taliano, D.B.

Kelemen, P. B., & Matter, J. M. (2008). In situ carbonation of peridotite for CO2 storage. PNAS, 105(45), 17295-17300. https://doi.org/10.1073/pnas.0805794105

Kelley, D. S., & Shank, T. M. (2010). Hydrothermal systems: a decade of discovery in slow spreading environments. In P.a. Rona, C.w. Devey, J. Dyment, & B.j. Murton (Eds.), Diversity Of Hydrothermal Systems On Slow-Spreading Ocean Ridges. Agu Geophysical Monograph Series. https://doi.org/10.1029/2010Gm000945

Kim, S-T., Mucci, A., & Taylor, B. E. (2007). Phosphoric acid fractionation factors for calcite and aragonite between 25 and 75 °C: Revisited. Chemical Geology, 246(3-4), 135-146. https://doi.org/10.1016/j.chemgeo.2007.08.005

Kishida, A., & Kerrich, R. (1987). Hydrothermal alteration zoning and gold concentration at the Kerr-Addison Archean lode gold deposit, Kirkland Lake, Ontario. Economic Geology, 82(3), 649-690. https://doi.org/10.2113/gsecongeo.82.3.649

Koc, S., & Kadioglu, Y. K. (1996). Mineralogy, geochemistry, and precious metal content of Karacakaya (Yunusemre-Eskisehir) Listwaenites. Ofioliti, 21(2), 125-130.

Leblanc, M. (1991). Platinum-group elements and gold in ophiolitic complexes: distribution and fractionation from mantle to oceanic floor. In T. Peters, A. Nicolas, & R. Coleman, Ophiolite Genesis and Evolution of the Oceanic Lithosphere. Springer. https://doi.org/10.1007/978-94-011-3358-6_13

Downloads

Download data is not yet available.

Similar Articles

1 2 3 4 > >> 

You may also start an advanced similarity search for this article.