Review of geothermochronological and thermobarometric techniques for the construction of cooling and exhumation curves or paths for intrusive igneous rocks

Autores/as

DOI:

https://doi.org/10.32685/0120-1425/boletingeo.47.2020.527

Palabras clave:

curvas o trayectorias de enfriamiento y exhumación, geocronología, termocronología, termobarometría en rocas ígneas

Descargas

Cómo citar

Cetina, L. M., López-Isaza, J. A., Cuéllar-Cárdenas, M. A., & Forero-Ortega, A. J. (2020). Review of geothermochronological and thermobarometric techniques for the construction of cooling and exhumation curves or paths for intrusive igneous rocks. Boletín Geológico, (47), 85–105. https://doi.org/10.32685/0120-1425/boletingeo.47.2020.527

Número

Sección

Artículos

Publicado

23-12-2020

Resumen

El presente trabajo expone una revisión de técnicas radiométricas y termobarométricas para construir curvas o trayectorias de enfriamiento aplicadas a la caracterización de intrusivos, así como el cálculo de tasas de enfriamiento y exhumación. Para la construcción de estas curvas o trayectorias se deben estimar en los intrusivos las variables de temperatura, tiempo y profundidad, aplicando diversas técnicas analíticas que incluyen termobarometría y geotermocronología U-Pb en circón, Ar-Ar en hornblenda y moscovita, y trazas de fisión y (U-Th)/He en circón y apatito, esto integrado a un marco geológico de referencia para cada intrusivo. Se recomienda determinar la edad de cristalización mediante U-Pb en circón, cuantificar la profundidad del emplazamiento utilizando métodos de termobarometría según la composición del intrusivo, calcular edades de enfriamiento inicial con los métodos Ar-Ar en hornblenda y moscovita, y calcular edades de enfriamiento/exhumación en corteza superior mediante métodos de termocronología de baja temperatura. Estas curvas o trayectorias de enfriamiento en intrusivos son de gran relevancia para estudiar áreas compresivas o extensionales, pues representan en parte la historia termal de la zona y, por lo tanto, proporcionan información sobre la evolución magmática y tectónica de la región. Por lo expuesto, estos estudios son de gran importancia para la formulación de modelos geodinámicos y su posible aplicación en la construcción del modelo tectónico del país.

Referencias bibliográficas

Anderson, J. (1996). Status of thermobarometry in granitic batholiths. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 87(1-2), 125-138. https://doi.org/10.1017/S0263593300006544

Anderson, J., & Smith, D. (1995). The effects of temperature and f02 on the Al-in-hornblende barometer. American Mi­neralogist, 80, 549-559. https://doi.org/10.2138/am-1995-5-614

Anderson, J., Barth, A., & Young, E. (1988). Mid-crustal Cre­taceous roots of Cordilleran metamorphic core complexes. Geology, 16(4), 366-369. https://doi.org/10.1130/0091-7613(1988)016<0366:MCCROC>2.3.CO;2

Anderson, J., Barth, A., Wooden, J., & Mazdab, F. (2008). Thermometers and thermobarometers in granitic systems. Reviews in Mineralogy and Geochemistry, 69(1), 121-142. https://doi.org/10.2138/rmg.2008.69.4

Armstrong, F. (2005). Thermochronometers in sedimentary basins. Reviews in Mineralogy and Geochemistry, 58, 499- 525. https://doi.org/10.2138/rmg.2005.58.19

Barbarand, J., Carter, A., Wood, I., & Hurford, T. (2003). Com­positional and structural control of fission-track anneal­ing in apatite. Chemical Geology, 198, 107-137. https://doi.org/10.1016/S0009-2541(02)00424-2

Bernet, M., Piraquive, A., Urueña, C., López Isaza, J., Bermú­dez, M., Zuluaga, C., Amaya, S., & Villamizar, N. (2019). Multidisciplinary petro-geo-thermochronological ap­proach to ore deposit exploration. Ore Geology Reviews, 112, 1-17. https://doi.org/10.1016/j.oregeorev.2019.103017

Bernet, M., Van der Beek, P., Pik, R., Huyghe, P., Mugnier, J. L., Labrin, E., & Szulc, A. (2006). Miocene to recent exhu­mation of the central Himalaya determined fromcombined detrital zircon fission-track and U/Pb analysis of Siwalik sediments, Western Nepal. Basin Research, 18(4), 393-412. https://doi.org/10.1111/j.1365-2117.2006.00303.x

Blundy, J., & Holland, T. (1990). Calcic amphibole equilibria and a new amphibole-plagioclase geothermometer. Contri­butions to Mineralogy and Petrology, 104, 208-224. https://doi.org/10.1007/BF00306444

Boven, A., Pasteels, P., Kelley, S., Punzalan, L., Bingen, B., & De­maiffe, D. (2001). 40Ar/39Ar study of plagioclases from the Rogaland anorthosite complex (SW Norway); an attempt to understand argon ages in plutonic plagioclase. Chemical Geology, 176(1-4), 105-135. https://doi.org/10.1016/S0009-2541(00)00372-7

Brandon, M., Roden Tice, M., & Garver, J. (1998). Late Ce­nozoic exhumation of the Cascadia accretionary we­dge in the Olympic Mountains, Northwest Washing­ton State. GSA Bulletin, 110(8), 985-1009. https://doi.org/10.1130/0016-7606(1998)110<0985:LCEOTC>2.3.CO;2

Braun, J., Van Der Beek, P., Valla, P., Robert, X., Herman, F., Glotzbach, C., Pedersen, V., Perry, C., Simon-Labric, T., & Prigent, C. (2012). Quantifying rates of landscape evo­lution and tectonic processes by thermochronology and numerical modeling of crustal heat transport using Pecu­be. Tectonophysics, 524, 1-28. https://doi.org/10.1016/j.tec­to.2011.12.035

Buddington, A. (1959). Granite emplacement with spe­cial reference to North America. Bulletin of The Geo­logical Society of America, 70, 571-747. https://doi.org/10.1130/0016-7606(1959)70[671:GEWSRT]2.0.CO;2

Caggianelli, A., Prosser, G., & Del Morro, A. (2000). Cooling and exhumation history of deep-seated and shallowlevel, late Hercynian granitoids from Calabria. Geological Jour­nal, 35, 33-42. https://doi.org/10.1002/(SICI)1099-1034(200001/03)35:1<33::AID-GJ836>3.0.CO;2-U

Cardona, A., Valencia, V., Weber, M., Duque, J., Montes, C., Ojeda, G., Reiners, P., Domanik, K., Nicolescu, S., & Vi­llagómez, D. (2011). Transient Cenozoic tectonic stages in the southern margin of the Caribbean plate: U-Th/He ther­mochronological constraints from Eocene plutonic rocks in the Santa Marta massif and Serranía de Jarara, North­ern Colombia. Geological Acta, 9(3-4), 445-466. https://doi.org/10.1344/105.000001739

Carroll, M., & Wyllie, P. (1990). The system tonalite-H2O at 15 kbar and the genesis of calc-alkaline magmas. American Mineralogist, 75(3-4), 345-357.

Carslaw, H., & Jaeger, J. (1959). Conduction of heat in solids. Clarendon Press. https://doi.org/10.2307/3610347

Cherniak, D., & Watson, E. (2001). Pb diffusion in zircon. Chemical Geology, 172(1-2), 5-24. https://doi.org/10.1016/S0009-2541(00)00233-3

Chew, D., & Spikings, R. (2015). Geochronology and ther­mochronology using apatite: Time and temperature lower crust to surface. Elements, 11, 189-194. https://doi.org/10.2113/gselements.11.3.189

Clarke, D. (1992). Granitoid rocks. Chapman y Hall. Topics in the Earth Sciences, 7.

Coleman, D., Gray, W., & Glazner, A. (2004). Rethinking the emplacement and evolution of zoned plutons: Geochrono­logic evidence for incremental assembly of the Tuolumne Intrusive Suite, California. Geology, 32(5), 433-436. https://doi.org/10.1130/G20220.1

Corfu, F., Hanchar, J., Hoskin, P., & Kinny, P. (2003). Atlas of zircon textures. Reviews in Mineralogy and Geochemistry, 53(1), 469-500. https://doi.org/10.2113/0530469

Corrigan, J. (1991). Inversion of apatite fission track data for thermal history information. Journal of Geophysical Research, 96(B6), 10347-10360. https://doi.org/10.1029/91JB00514

Cortés Calderón, E. (2015). Geochemical behavior and empla­cement conditions of the Ibagué Batholith: Regional implica­tions (tesis de grado), Universidad de los Andes.

Dahl, P. (1996). The crystal-chemical basis for Ar retention in micas: Inferences from interlayer partitioning and im­plications for geochronology. Contributions to Minera­logy and Petrolpgy, 123, 22-39. https://doi.org/10.1007/s004100050141

Dalrymple, G., & Lanphere, M. (1969). Potassium-argon da­ting: Principles, techniques and applications to geochronolo­gy. Freeman.

Deeken, A. S. (2006). Development of the Southern Eastern Cordillera, NW Argentina, constrained by apatite fission track thermochronology: From early Cretaceous extension to middle Miocene shortening. Tectonics, 25(6). https://doi.org/10.1029/2005TC001894

Dodson, M. (1973). Closure temperature in cooling geo­chronological and petrological systems. Contributions to Mineralogy and Petrology, 40(3), 259-274. https://doi.org/10.1007/BF00373790

Dodson, M. (1979). Theory of cooling ages. En E. Jäger y J. C. Hunziker (eds.), Lectures in isotope geology (pp. 194-202), Springer. https://doi.org/10.1007/978-3-642-67161-6_14

Donelick, R. (1993). Apatite etching characteristics versus che­mical composition. Nuclear Tracks and Radiation Measure­ments, 21(604), 1359-0189

Donelick, R., O’Sullivan, P., & Ketcham, R. (2005). Apatite fis­sion-track analysis. Reviews in Mineralogy and Geochemis­try, 58, 49-94. https://doi.org/10.2138/rmg.2005.58.3

Ehlers, T. (2005). Crustal thermal processes and the interpre­tation of thermochronometer data. Reviews in Mineralogy and Geochemistry, 58(1), 315-350. https://doi.org/10.2138/rmg.2005.58.12

England, P., & Molnar, P. (1990). Surface uplift, uplift of roc­ks, and exhumation of rocks. Geology, 18(12), 1173-1177. https://doi.org/10.1130/0091-7613(1990)018<1173:­SUUORA>2.3.CO;2

Esser, R., McIntosh, W., Heizler, M., & Kyle, P. (1997). Excess argon in melt inclusions in zero-age anorthoclase feldspar from Mt Erebus, Antarctica, as revealed by the 40Ar/39Ar method. Geochimica et Cosmochimica Acta, 61(18), 3789- 3801. https://doi.org/10.1016/S0016-7037(97)00287-1

Farley, K. (2000). Helium diffusion from apatite: General be­havior as illustrated by Durango fluorapatite. Journal of Geophysical Research: Solid Earth, 105(B2), 2903-2914. https://doi.org/10.1029/1999JB900348

Farley, K. (2002). (U-Th)/He Dating: Techniques, calibrations, and applications. Reviews in Mineralogy and Geochemistry, 47(1), 819-844. https://doi.org/10.2138/rmg.2002.47.18

Faure, G., & Mensing, T. (2005). Isotopes: Principles and appli­cations. John Wiley & Sons.

Ferry, J., & Watson, E. (2007). New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-ruti­le thermometers. Contribution to Mineralogy and Petrology, 154, 429-437. https://doi.org/10.1007/s00410-007-0201-0

Fleck, R., Sutter, J., & Elliot, D. (1977). Interpretation of dis­cordant 40Ar-39Ar age-spectra of Mesozoic tholeiites from Antarctica. Geochimica et Cosmochimica Acta, 41, 15-32.

Fleischer, R., Price, P., & Walker, R. (1975). Nuclear tracks in solids: Principles and applications. University of California Press.

Foster, D., Miller, C., Harrison, T., & Hoisch, T. (1992). 40Ar/39Ar thermochronology and thermobarometry of metamor­phism, plutonism, and tectonic denudation in the Old Wo­man Mountains area, California. GSA Bulletin, 104, 176-191. https://doi.org/10.1130/0016-7606(1992)104<0176:AATA­TO>2.3.CO;2

Foster, D., Schafer, C., Fanning, C., & Hyndman, D. (2001). Relationships between crustal partial melting, plutonism, orogeny, and exhumation: Idaho-Bitterroot batholith. Tec­tonophysics, 342 (3-4), 313-350. https://doi.org/10.1016/S0040-1951(01)00169-X

Gallagher, K. (2012). Transdimensional inverse thermal his­tory modeling for quantitative thermochronology. Journal of Geophysical Research: Solid Earth, 117(B2). https://doi. org/10.1029/2011JB008825

Gallagher, K., Brown, R., & Johnson, C. (1998). Fission track analysis and its applications to geological problems. An­nual Review of Earth and Planetary Sciences, 26, 519-572. https://doi.org/10.1146/annurev.earth.26.1.519

Garver, J. I., & Kamp, P. J. (2002). Integration of zircon col­or and zircon fission-track zonation patterns in orogen­ic belts: Application to the Southern Alps, New Zealand. Tectonophysics, 349(1-4), 203-219. https://doi.org/10.1016/S0040-1951(02)00054-9

Garver, J. I., Riley, B. C. D., & Wang, G. (2002). Partial resetting of fission tracks in detritai zircon. Geotemas, (4), 73-76.

George, P. (1993). Tectonic implications of fission-track thermo­chronology and amphibole thermobarometry studies of the Northern Peninsular Ranges Batholith, Southern California (tesis Ph. D.), The Louisiana State University.

Gil Rodríguez, J. (2014). Petrology of the Betulia Igneous Complex, Cauca, Colombia. Journal of South American Earth Sciences, 56, 339-356. https://doi.org/10.1016/j.jsa­mes.2014.09.016

Gleadow, A., & Fitzgerald, P. (1987). Uplift history and struc­ture of the Transantarctic Mountains: New evidence from fission track dating of basement apatites in the Dry Valleys area, Southern Victoria Land. Earth and Planetary Science Letters, 82, 1-14.

Gleadow, I., Duddy, I., & Lovering, J. (1983). Fission track analysis: A new tool for the evaluation of thermal histories and hydrocarbon potential. The APPEA Journal, 23(1), 93-102. https://doi.org/10.1071/AJ82009

Glorie, S., Alexandrov, I., Nixon, A., Jepson, G., Gillespie, J., & Jahn, B.-M. (2017). Thermal and exhumation history of Sakhalin Island (Russia) constrained by apatite U-Pb and fission track thermochronology. Journal of Asian Earth Sciences, 143, 326-342. https://doi.org/10.1016/j.jseaes.2017.05.011

Gómez, J., Montes, N., Alcárcel, F., & Ceballos, J. (2015). Catá­logo de dataciones radiométricas de Colombia en ArcGIS y Google Earth. En J. Gómez, & M. F. Almanza (eds.), Com­pilando la geología de Colombia: Una visión a 2015. Publi­caciones Geológicas Especiales, vol. 33. Servicio Geológico Colombiano.

Green, P., Duddy, I., Gleadow, A., & Lovering, J. (1989). Apatite fission track analysis as palaeotemperature indicator for hy­drocarbon exploration. En N. D. Naeser & T. H. McCulloh (eds.) Thermal history of sedimentary (pp. 181-195), Spring­er-Verlag. https://doi.org/10.1007/978-1-4612-3492-0_11

Green, P., Duddy, I., Gleadow, A., Tingate, P., & Laslett, G. (1985). Fission-track annealing in apatite: Track length measurements and the form of the Arrhenius plot. Nu­clear Tracks and Radiation Measurements, 10(3), 323-328. https://doi.org/10.1016/0735-245X(85)90121-8

Green, P., Duddy, I., Gleadow, A., Tingate, P., & Laslett, G. (1986). Thermal annealing of fission tracks in apatite: 1. A qualitative description. Chemical Geology (Isotope Geos­cience Section), 59, 237-253. https://doi.org/10.1016/0168- 9622(86)90074-6

Green, P., Duddy, I., Laslett, G., Hegarty, K., Gleadowa, A., & Lovering, J. (1989). Thermal annealing of fission tracks in apatite: 4. Quantitative modelling techniques and exten­sion to geological timescales. Chemical Geology, 79: 155- 182. https://doi.org/10.1016/0168-9622(89)90018-3

Grove, M., & Harrison, T. (1996). 40Ar* diffusion in Fe-rich bi­otite. American Mineralogist, 81(7-8), 940-951. https://doi. org/10.2138/am-1996-7-816

Hammarstrom, J., & Zen, E.-A. (1986). Aluminum in horn­blende: An empirical igneous geobarometer. American Mineralogist, 71, 1297-1313.

Harrison, T. (1982). Diffusion of 40Ar in hornblende. Contribu­tions to Mineralogy and Petrology, 78(3), 324-331. https:// doi.org/10.1007/BF00398927

Harrison, T., Armstrong, R., Naeser, C., & Harakal, J. (1979). Geochronology and thermal history of the Coast Plutonic Complex, near Prince Rupert, British Columbia. Cana­dian Journal of Earth Sciences, 16(3), 400-410. https://doi. org/10.1139/e79-038

Harrison, T., Celerier, J., Aikman, A., Hermann, J., & Heizler, M. (2009). Diffusion of 40Ar in muscovite. Geochimica et Cosmochimica Acta, 73(4), 1039-1051. https://doi.or­g/10.1016/j.gca.2008.09.038

Harrison, T., & Clarke, G. (1979). A model of the thermal effects of intrusion and uplift as applied to Quottoon plu­ton British Columbia. Canadian Journal of Earth Sciences, 16(3), 411-420. https://doi.org/10.1139/e79-039

Harrison, T., Duncan, I., & Mcdougall, I. (1985). Diffusion of 40Ar in biotite: Temperature, pressure and compositional effects. Geochimica et Cosmochimica Acta, 49(11), 2461- 2468. https://doi.org/10.1016/0016-7037(85)90246-7

Harrison, T., Watson, E., & Aikman, A. (2007). Temperature spectra of zircon crystallization in plutonic rocks. Geology, 35(7), 635-638. https://doi.org/10.1130/G23505A.1

Hayden, L. A., & Watson, E. B. (2007). Rutile saturation in hy­drous siliceous melts and its bearing on Ti-thermometry of quartz and zircon. Earth and Planetary Science Letters, 258, 561-568. https://doi.org/10.1016/j.epsl.2007.04.020

Hayden, L., Watson, E., & Wark, D. (2008). A thermobarome­ter for sphene. Contributions to Mineralogy and Petrology, 155(4), 529-540. https://doi.org/10.1007/s00410-007-0256-y

Holland, T., & Blundy, J. (1994). Non-ideal interactions in cal­cic amphiboles and their bearing on amphibole-plagioclase thermometry. Contributions to Mineralogy and Petrology, 116, 433-447. https://doi.org/10.1007/BF00310910

Hunziker, J., Desmons, J., & Hurford, A. (1992). Thirty-two years of geochronological work in the Central and Western Alps: A review on seven maps. Mémoires de Géologie (Lau­sanne), 13.

Hurford, A. (1986). Cooling and uplift patterns in the Lepon­tine Alps South Central Switzerland and an age of vertical movement on the Insubric fault line. Contributions to Mine­ralogy and Petrology, 92, 413-427. https://doi.org/10.1007/ BF00374424

Kelley, S. (2002). K-Ar and Ar-Ar Dating. Reviews in Min­eralogy and Geochemistry, 47(1), 785-818. https://doi. org/10.2138/rmg.2002.47.17

Ketcham, R. (2005). Forward and inverse modeling of low-tem­perature thermochronometry data. Reviews in Mineralogy and Geochemistry, 58(1), 275-314. https://doi.org/10.2138/ rmg.2005.58.11

Ketcham, R., Donelick, R., & Carlson, W. (1999). Variability of apatite fission-track annealing kinetics: III. Extrapolation to geological time scales. American Mineralogist, 84, 1235- 1255. https://doi.org/10.2138/am-1999-0903

Kramar, N., Cosca, M., & Hunziker, J. (2001). Heterogeneous Ar-40* distributions in naturally deformed muscovite: In situ UV-laser ablation evidence for micro structurally con­trolled intra-grain diffusion. Earth and Planetary Science Letters, 192(3), 377-388. https://doi.org/10.1016/S0012- 821X(01)00456-3

Lanphere, M., & Dalrymple, G. (1971). A test of the 40Ar/39Ar age spectrum technique on some terrestrial material. Earth and Planetary Science Letters, 12, 359-372. https://doi.or­g/10.1016/0012-821X(71)90020-3

León, S., Cardona, A., Parra, M., Sobel, E., Jaramillo, J., Glodny, J., Valencia, V. A., Chew, D., Montel, C., Posada, G., Mon­salve, G., & Pardo Trujillo, A. (2018). Transition from co­llisional to subduction-related regimes: An example from Neogene Panama-Nazca-South America interactions. Tec­tonics, 37, 119-139. https://doi.org/10.1002/2017TC004785

Ludwig, K. (2009). User’s manual for Isoplot 3.7: A geochrono­logical toolkit for Microsoft Excel. Special Publication n.° 4. Geochronology Center.

Martínez, L., & Zuluaga, C. (2010). Thermal modeling of plu­ton emplacement and associated contact metamorphism: Parashi stock emplacement in the Serranía de Jarara (alta Guajira, Colombia). Earth Sciences Research Journal, 14(2), 145-152.

McDougall, I., & Harrison, T. (1999). Geochronology and ther­mochronology by the 40Ar/39Ar method. Oxford University Press.

McInnes, B., Farley, K., Sillitoe, R., & Kohn, B. (1999). Appli­cation of apatite (U-Th)/He thermochronometry to the determination of the sense and amount of vertical fault displacement at the Chuquicamata porphyry copper de­posit, Chile. Economic Geology, 94(6), 937-947. https://doi. org/10.2113/gsecongeo.94.6.937

Miller, J., Matzel, J., Miller, C., Burguess, S., & Miller, R. (2007). Zircon growth and recycling during the assembly of large, composite arc plutons. Journal of Volcanology and Geother­mal Research, 167, 282-299. https://doi.org/10.1016/j.jvol­geores.2007.04.019

Mutch, E., Blundy, J., Tattitch, B., Cooper, F., & Brooker, R. (2016). An experimental study of amphibole stability in low-pressure granitic magmas and a revised Al-in-hor­nblende geobarometer. Contributions to Mineralogy and Petrology, 171(85), 1-27. https://doi.org/10.1007/s00410- 016-1298-9

Nasdala, L., Wenzel, M., Vavra, G., Irmer, G., Wenzel, T., & Ko­ber, B. (2001). Metamictisation of natural zircon: Accumu­lation versus thermal annealing of radioactivity-induced damage. Contributions to Mineralogy and Petrology, 141(2), 125-144. https://doi.org/10.1007/s004100000235

Nieto Samaniego, A., Olmos Moya, M., Levresse, G., Alaniz Ál­varez, S., Abdullin, F., Pilar Martínez, A., & Xu, S. (2019). Thermocronology and exhumation rates of granitic intru­sions at Mesa-Central, Mexico. International Geology Re­view, 62(3), 311-319. https://doi.org/10.1080/00206814.20 19.1602789

Oriolo, S., Wemmer, K., Oyhantçabal, P., Fossen, H., Schulz, B., & Siegesmund, S. (2018). Geochronology of shear zones; A review. Earth-Science Reviews, 185, 665-683. https://doi. org/10.1016/j.earscirev.2018.07.007

Parada, M., Féraud, G., Fuentes, F., Aguirre, L., Morata, D., & Larrondo, P. (2005). Ages and cooling history of the Early Cretaceous Caleu pluton: Testimony of a switch from a rift­ed to a compressional continental margin in central Chile. Journal of the Geological Society, 162, 205, 273-287. https:// doi.org/10.1144/0016-764903-173

Paterson, S., Fowler, T., & Miller, R. (1996). Pluton emplace­ment in arcs: A crustal-scale exchange process. Earth and Environmental Science Transactions of The Royal Society of Edinburgh, 87(1-2), 115-123. https://doi.org/10.1017/ S0263593300006532

Peacock, S. (1989). Thermal modeling of metamorphic pressu­re‐temperature‐time paths: A forward approach. Metamor­phic Pressure-Temperature-Time Paths, 7, 57-102. https:// doi.org/10.1029/SC007p0057

Peyton, S., & Carrapa, B. (2013a). An introduction to low-temperature thermochronologic techniques, metho­dology, and applications. En C. Knight, J. Cuzella & L. D. Cress (eds.), Application of structural methods to Roc­ky Mountain hydrocarbon exploration and development (pp. 15-36), AAPG Studies in Geology, 65. https://doi.or­g/10.1306/13381688St653578

Peyton, S., & Carrapa, B. (2013b). An overview of low-tem­perature thermochronology in the Rocky Mountains and its application to petroleum system analysis. En C. Knight, J. Cuzella & L. D. Cress (eds.), Application of structural methods to Rocky Mountain hydrocarbon exploration and development (pp. 37-70), AAPG Studies in Geology, 65. https://doi.org/10.1306/13381689St653578

Pitcher, W. (1997). The nature and origin of granite. Springer Scien­ce+Business Media Dordrecht. https://doi.org/10.1007/978- 94-011-5832-9

Pupin, J. (1980). Zircon and granite petrology. Contributions to Mineralogy and Petrology, 73(3), 207-220. https://doi. org/10.1007/BF00381441

Putirka, K., Johnson, M., Kinzler, R., Longhi, J., & Walker, D. (1996). Thermobarometry of mafic igneous rocks based

clinopyroxene-liquid equilibria, 0-30 kbar. Contribu­tions to Mineralogy and Petrology, 123, 92-108. https://doi. org/10.1007/s004100050145

Rahn, M. K., Brandon, M. T., Batt, G. E., & Garver, J. I. (2004). A zero-damage model for fission-track annealing in zir­con. American Mineralogist, 89(4), 473-484. https://doi. org/10.2138/am-2004-0401

Reiners, P., & Brandon, M. (2006). Using thermochronology to understand orogenic erosion. Annual Review of Earth and Planetary Sciences, 34, 419-466. https://doi.org/10.1146/ annurev.earth.34.031405.125202

Reiners, P., Carlson, R., Renne, P., Cooper, M., Granger, D., McLean, N., & Schoene, B. (2017). Geochronology and thermochronology. John Wiley & Sons. https://doi. org/10.1002/9781118455876

Restrepo Moreno, S., Foster, D., Bernet, M., Min, K., & Norie­ga, S. (2019). Morphotectonic and orogenic development of the Northern Andes of Colombia: A low-temperature ther­mochronology perspective. En F. Cediel, R. P. Shaw (eds.), Geology and tectonics of Northwestern South America, Fron­tiers in Earth Sciences. https://doi.org/10.1007/978-3-319- 76132-9_11

Restrepo Moreno, S., Foster, D., Stockli, D., & Parra Sánchez, L. (2009). Long-term erosion and exhumation of the “Al­tiplano Antioqueño”, Northern Andes (Colombia) from apatite (U-Th)/He thermochronology. Earth and Planetary Science Letters, 278(1-2), 1-12. https://doi.org/10.1016/j. epsl.2008.09.037

Ridolfi, F., & Renzulli, A. (2012). Calcic amphiboles in calc-alkaline and alkaline magmas: Thermobarometric and chemometric empirical equations valid up to 1130 °C and 2.2 GPa. Contribution to Mineralogy and Petrology, 163, 877-895. https://doi.org/10.1007/s00410-011-0704-6

Ridolfi, F., Renzulli, A., & Puerini, M. (2010). Stability and che­mical equilibrium of amphibole in calc-alkaline magmas: An overview, new thermobarometric formulations and application to subduction-related volcanoes. Contribution to Mineralogy and Petrology, 160(1), 45-66. https://doi. org/10.1007/s00410-009-0465-7

Ring, U., Brandon, M., Willett, S., & Lister, G. (1999). Exhuma­tion processes. Special Publications, 154, Geological Society. https://doi.org/10.1144/GSL.SP.1999.154.01.01

Sáenz, E. (2003). Fission track thermochronology and denuda­tional response to tectonics in the north of The Colombian Central Cordillera (tesis de maestría), Shimane University.

Sáenz, E., Paucar, C., & Restrepo, J. (1996). Estudio de la evolu­ción térmica del Batolito Antioqueño por huellas de fisión. 7th Congreso Colombiano de Geología, Bogotá.

Schaen, A. J., Jicha, B. R., Hodges, K. V., Vermeesch, P., Stel­ten, M. E., Mercer, C. M. Phillips, D., Rivera, T., Jourdan, F., Matchan, E., Hemming, S., Morgan, L., Kelley, S., Cassata, W., Heizler, M., Vasconcelos, P., Benowitz, J., Koppers, A., Mark, D., Niespolo, E., … Singer, H. (2020). Interpretin­gandreporting40Ar/39Ar geochronologicdata. GSA Bulle­tin. https://doi.org/10.1130/B35560.1

Schmidt, M. (1992). Amphibole composition in tonalite as a function of pressure: An experimental calibration of the AI-in-hornblende barometer. Contributions to Mineral­ogy and Petrology, 110, 304-310. https://doi.org/10.1007/ BF00310745

Schmidt, M. (1993). Phase relations and compositions in tona­lite as a function of pressure: An experimental study at 650 C. American Journal of Science, 293, 1011-1011.

Spencer, C. J., Kirkland, C. L., & Taylor, R. J. (2016). Strategies towards statistically robust interpretations of in situ U-Pb zircon geochronology. Geoscience Frontiers, 7(4), 581-589. https://doi.org/10.1016/j.gsf.2015.11.006

Tollari, N., Toplis, M., & Barnes, S.-J. (2006). Predicting phos­phate saturation in silicic magmas: An experimental study of the effects of melt composition and temperature. Geo­chimica et Cosmochimica Acta, 70, 1518-1536. https://doi. org/10.1016/j.gca.2005.11.024

Treloar, P. (1981). Garnet-biotite-cordierite thermometry and barometry in the Cashel thermal aureole, Connemara, Ireland. Mineralogical Magazine, 44, 183-189. https//doi. org/10.1180/minmag.1981.044.334.11

Turner, G. (1970). 40Ar/39Ar dating of lunar rock samples. Science, 167, 466-468.

Van der Lelij, R., Spikings, R., & Mora, A. (2016). Thermochro­nology and tectonics of the Mérida Andes and the Santan­der Massif, NW South America. Lithos, 248-251, 220-239. https://doi.org/10.1016/j.lithos.2016.01.006

Vermeesch, P. (2018). IsoplotR: A free and open toolbox for geochronology. Geoscience Frontiers, 9(5), 1479-1493. https://doi.org/10.1016/j.gsf.2018.04.001

Villagómez, D., & Spikings, R. (2013). Thermochronology and tectonics of the Central and Western Cordilleras of Colom­bia: Early Cretaceous-Tertiary evolution of the Northern Andes. Lithos, 160(161), 228-249. https://doi.org/10.1016/j.lithos.2012.12.008

Villagómez, D., Spikings, R., Mora, A., Guzmán, G., Ojeda, G., Córtes, E., & Van der Lelij, R. (2011). Vertical tecton­ics at a continental crust oceanic plateau plate boundary zone: Fission track thermochronology of the Sierra Nevada de Santa Marta, Colombia. Tectonics, 30, 1-18. https://doi. org/10.1029/2010TC002835

Wagner, G., Reimer, G., & Jager, E. (1977). Cooling ages de­rived by apatite fission-track, with Rb-Sr and K-Ar dating: The uplift and cooling history of the Central Alps. Memorie degli Istituti di Geologia e Mineralogia dell’ Universita di Pa­dova, 30(28), 1-27.

Wartho, J., Rex, D., & Guise, P. (1996). Excess argon in am­phiboles linked to greenschist facies alteration in Kamila amphibolite belt, Kohistan island arc system, Northern Pakiston: Insights from 40Ar/39Ar step-heating and acid leaching experiments. Geological Magazine, 133, 595-609. https://doi.org/10.1017/S0016756800007871

Watson, E., & Harrison, T. (1983). Zircon saturation revisited’ temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters, 64, 295- 304. https://doi.org/10.1016/0012-821X(83)90211-X

Watson, E., Wark D. A., & Thomas, J. (2006). Crystallization thermometers for zircon and rutile. Contributions to Mi­neral and Petrology, 151, 413-433. https://doi.org/10.1007/s00410-006-0068-5

Wei, C., & Powell, R. (2004). Calculated phase relations in high pressure metapelites in the system NKFMASH (Na2O-K2O-FeO-MgO-Al2O3-SiO2-H2O). Journal of Petrology, 45, 183-202. https://doi.org/10.1093/petrology/egg085

Wei, C., & Powell, R. (2006). Calculated phase relations in the system NCKFMASH (Na2O-CaO-K2O-FeO-MgO-Al2O3- SiO2-H2O) for high pressure metapelites. Jounal of Petro­logy, 47, 385-408. https://doi.org/10.1093/petrology/egi079

Wendt, I., & Carl, C. (1991). The statistical distribution of the mean squared weighted deviation. Chemical Geology Isotope Geoscience Section 86, 275-285. http://dx.doi.or­g/10.1016/0168-9622(91)90010-T

Wolf, R., Farley, K., & Kass, D. (1998). Modeling of the tem­perature sensitivity of the apatite (U-Th)/He thermochro­nometer. Chemical Geology, 148(1-2), 105-114. https://doi.org/10.1016/S0009-2541(98)00024-2

Wolf, R., Farley, K., & Silver, L. (1996). Helium diffusion and low-temperature thermochronometry of apatite. Geochi­mica et Cosmochimica Acta, 60(21), 4231-4240. https://doi.org/10.1016/S0016-7037(96)00192-5

Wu, C.-M., Zhang, J. & Ren, L.-D. (2004a). Empirical Garnet-Bi­otite-Plagioclase-Quartz (GBPQ) Geobarometry in Medi­um- to High-Grade Metapelites. Journal of Petrology, 45(9), 1907-1921. https://doi.org/10.1093/petrology/egh038

Wu, C.-M., Zhang, J., & Ren, L.-D. (2004b). Empirical gar­net-muscovite-plagioclase-quartz geobarometry in me­dium- to high-grade metapelites. Lithos, 78, 319-332. https://doi.org/10.1016/j.lithos.2004.06.008

Zeitler, P. (1985). Cooling history of the NW Himalaya, Pa­kistan. Tectonics, 4(1), 127-151. https://doi.org/10.1029/TC004i001p00127

Zeitler, P., Johnson, N., Naeser, C., & Tahirkheli, R. (1982). Fis­sion-track evidence for Quaternary uplift of the Nanga Par­bat region, Pakistan. Nature, 298 (5871), 255-257. https://doi.org/10.1038/298255a0

Zen, E., & Hammarstrom, J. (1984). Magmatic epidote and its petrologic significance. Geology, 12, 515-518. https://doi.org/10.1130/0091-7613(1984)12<515:MEAIPS>2.0.CO;2

Descargas

Los datos de descargas todavía no están disponibles.

Artículos similares

1 2 3 4 5 6 7 8 9 10 11 12 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.