Ediacaran mega-zircons of the San José del Guaviare nepheline syenite and their potential use as reference material for U/Pb dating through LA-ICP-MS

Authors

DOI:

https://doi.org/10.32685/0120-1425/boletingeo.45.2019.484

Keywords:

U/Pb dating of zircons, laser, mass spectrometry, mega-zircons, laboratory reference material, LA-ICPMS, geochronology, Ediacaran, Colombia

How to Cite

Muñoz Rocha, J. A., Piraquive Bermúdez, A., Franco Victoria, J. A., Bonilla Pérez, A., Peña Urueña, M. L., Cramer, T., … Villamizar Escalante, N. (2019). Ediacaran mega-zircons of the San José del Guaviare nepheline syenite and their potential use as reference material for U/Pb dating through LA-ICP-MS. Boletín Geológico, (45), 5–22. https://doi.org/10.32685/0120-1425/boletingeo.45.2019.484

Issue

Section

Articles

Published

2019-07-15

Abstract

With the aim of expanding the reference materials of the Geochronology Laboratory of the Colombian Geological Survey (LG-SGC, in Spanish), zircons were collected from the nepheline syenite of San José del Guaviare, Jordán locality (Colombia). The SNG-1 sample was composed of 24 zircons selected from the fraction between 2 and 5 millimeters long, which were mounted and polished in an epoxy resin block. The zircons were dated by analyzing the isotopic ratios of uranium and lead using the LA-ICPMS method. In the LG-SGC, 92 points on the zircons were selected for analysis, and at the University of Rennes in France (LG-URF), 24 points from crystals found nearby were selected for analysis from a previous cathodoluminescence study. Concordant ages for the zircons for both laboratories corresponded to a crystallization age of 608 ± 1.2 Ma and 602 ± 3 Ma, respectively, which differ by less than 1% despite the difference in instrumentation and analytical procedures. For systematic error correction and quality control, international reference material, such as Plešovice, GJ-1, FC-5 Duluth and Mount Dromedary zircon, was used. The uncertainties generated during the analyses are similar (1.2 and 3.2 Ma), and the mean square-weighted deviation (MSWD) of the concordia diagrams was < 1 in both cases, indicating low dispersion of the results. Some discordant ages show that the U/Pb ratios are not uniform, as expected for a primary reference material. However, we believe that the zircons of the Jordán syenite have potential use as a secondary reference material for the LG-SGC provided they are carefully selected and prepared, their geochemical content (including rare earth elements, REE) is characterized, and quality monitoring of U/Pb dating is performed, as these zircons are large, reaching up to 4 cm, abundant, and possible to collect in the Colombian territory.

References

Arango, M. I., Zapata García, G. y Martens, U. (2012). Caracterización petrográfica, geoquímica y edad de la sienita nefelinica de San José del Guaviare. Boletín de Geología, 34, 15-26.

Arango, M., Nivia, A., Zapata, G., Giraldo, M., Bermúdez, J. y Albarracín, H. (2011). Geología y geoquímica de la plancha 350, San José del Guaviare. Memoria. Medellín: Servicio Geológico Colombiano.

Campbell, I. H., Reiners, P. W., Allen, C. M., Nicolescu, S. y Upadhyay, R. (2005). He-Pb double dating of detrital zircons from the Ganges and Indus Rivers: Implication for quantifying sediment recycling and provenance studies. Earth and Planetary Science Letters, (3-4), 402-432. Doi: https://doi.org/10.1016/j.epsl.2005.06.043.

Campos Rodríguez, H. R. (2017). Caracterización geoquímica y mineralógica de la sienita nefelinica de San José del Guaviare y minerales asociados con elementos raros (ER). Trabajo de Grado. Bogotá: Universidad Nacional de Colombia.

Chang, Z., Vervoort, J. D., McClelland, W. C. y Knaack, C. (2006). U-Pb dating of zircon by LA-ICP-MS. Geochemistry, Geophysics, Geosystems, 7 (5). Doi: https://doi.org/10.1029/2005GC001100.

Corfu, F., Hanchar, J. M., Hoskin, P. W. O. y Kinny, P. (2003). Atlas of zircon textures. Reviews in Mineralogy and Geochemistry, 53 (1): 469-500. Doi: https://doi.org/10.2113/0530469.

Crowley, J. L., Schoene, B. y Bowring, S. A. (2007). U–Pb dating of zircon in the Bishop Tuff at the millennial scale. Geology 35 (12), 1123-1126. Doi: https://doi.org/10.1130/G24017A.1.

Fedo, C. M., Sircombe, K. N. y Rainbird, R. H. (2003). Detrital zircon analysis of the sedimentary record. Reviews in Mineralogy and Geochemistry, 53 (1), 1-25. Doi: https://doi.org/10.2113/0530277.

Finch R. J. y Hanchar J. M. (2005). Structure and Chemistry of Zircon and Zircon-Group Minerals. Reviews in Mineralogy and Geochemistry 53 (1): 1-25. Doi: https://doi.org/10.2113/0530001.

Franco, J. A., Muñoz, J. A., Piraquive, A., Bonilla, A., Cramer, T. y Campos, H. (2018). Geochronology of the nepheline syenite of el Jordan, Guaviare, Colombia, evidences of Neoproterozoic-Cambrian intraplate magmatism and its implications during Pan-African tectonics in Western Gondwana. En EGU2018 general assembly, Vienna, EGU2018, 20. Disponible en https://meetingorganizer.copernicus.org/EGU2018/EGU2018-10861.pdf.

García Romero, D. F. (2015). Petrografía y geoquímica de las rocas aflorantes al sur de San José del Guaviare. Trabajo de Grado. Bogotá: Universidad Nacional de Colombia.

Gehrels, G. E., Valencia, V. A. y Ruiz, J. (2008). Enhanced precision, accuracy, efficiency, and spatial resolution of U-Pb ages by laser ablation-multicollector-inductively coupled plasma-mass spectrometry. Geochemistry, Geophysics, Geosystems, 9 (3). Doi: https://doi.org/10.1029/2007GC001805.

Hanchar, J. M. y Miller, C. F. (1993). Zircon zonation patterns as revealed by cathodoluminescence and backscattered electron images: Implications for interpretation of complex crustal histories. Chemical Geology, 110 (1-3), 1-13. Doi: https://doi.org/10.1016/0009-2541(93)90244-D.

Harrison, T. M., Watson, E. B. y Aikman, A. B. (2007). Temperature spectra of zircon crystallization in plutonic rocks. Geology, 35 (7), 635-638. Doi: https://doi.org/10.1130/G23505A.1

Jackson, S. E., Pearson, N. J., Griffin, W. L. y Belousova, E. A. (2004). The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chemical Geology, 211 (1-2), 47-69. Doi: https://doi.org/10.1016/j.chemgeo.2004.06.017.

Jaffey, A. H., Flynn, K. F., Glendenin, L. E., Bentley, W. C. y Essling, A. M. (1971). Precision measurement of half-lives and specific activities of 235U and 238U. Physical Review Section C, 4 (5). Doi: https://doi.org/10.1103/PhysRevC.4.1889.

Klotzli, U., Klotzli, E., Gunes, Z. y Koslar, J. (2009). Accuracy of laser ablation U-Pb zircon dating: Results from a test using five different reference zircons. Geostandards and Geoanalytical Research, 33 (1), 5-15. Doi: https://doi.org/10.1111/j.1751-908X.2009.00921.x.

Koschek, G. (1993). Origin and significance of the SEM cathodoluminescence from zircon. Journal of Microscopy, 171 (3), 223-232. Doi: https://doi.org/10.1111/j.1365-2818.1993.tb03379.x.

Košler, J. y Sylvester, P. J. (2003). Present trends and the future of zircon in geochronology: laser ablation ICPMS. Reviews in Mineralogy and Geochemistry, 53, 243-275. Doi: https://doi.org/10.2113/0530243.

Li, X., Liu, X., Liu, Y., Su, L., Sun, W., Huang, H. y Yi, K. (2015). Accuracy of LA-ICPMS zircon U-Pb age determination: An inter-laboratory comparison. Science China Earth Sciences, 58 (10), 1722-1730. Doi: https://doi.org/10.1007/s11430-015-5110-x.

Ludwig, K. R. (2012). User’s manual for Isoplot 3.75, a geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, v. 5, 1-72.

Mattinson, J. M. (2005). Zircon U-Pb chemical abrasion (“CA-TIMS”) method: Combined annealing and multi-step partial dissolution analysis for improved precision and accuracy of zircon ages. Chemical Geology, 220 (1-2), 47-66. Doi: https://doi.org/10.1016/j.chemgeo.2005.03.011.

Paces, J. B. y Miller, J. D. (1993). Precise U-Pb ages of Duluth Complex and related mafic intrusions, northeastern Minnesota: Geochronological insights to physical, petrogenetic, paleomagnetic, and tectonomagmatic processes associated with the 1.1 GaMidcontinent Rift System. Journal of Geophysical Research Solid Earth, 98 (B8), 13997-14013. Doi: https://doi.org/10.1029/93JB01159.

Paton, C., Hellstrom, J., Paul, B., Woodhead, J. y Hergt, J. (2011). Iolite: Freeware for the visualisation and processing of mass spectrometric data. Journal of Analytical Atomic Spectrometry, 12, 2508-2518. Doi: https://doi.org/10.1039/C1JA10172B.

Peña Urueña, M. L., Muñoz Rocha, J. A. y Urueña, C. L. (2018). Laboratorio de Geocronología en el Servicio Geológico Colombiano: avances sobre datación U-Pb en circones mediante la técnica LA-ICP- MS. Boletín Geológico, 44, 39-56. Doi: https://doi.org/10.32685/0120-1425/boletingeo.44.2018.7.

Petrus, J. A. y Kamber, B. S. (2012). Vizual age: A novel approach to laser ablation ICP-MS U-Pb geochronology data reduction. Geostandards and Geoanalytical Research, 36 (3), 247-270. Doi: https://doi.org/10.1111/j.1751-908X.2012.00158.x.

Pinson W. H, J. R., Hurley, P. M., Mencher, E. y Fairbairn, H. W. (1962). K-Ar AND Rb-Sr Ages of Biotites from Colombia, South America. GSA Bulletin, 73(7), 907-910. Doi: https://doi.org/10.1130/0016-7606(1962)73[907:KARAOB]2.0.CO;2

Renne, P. R., Swisher, C. C., Deino, A. L., Karner, D. B., Owens, T. L. y De Paolo, D. J. (1998). Intercalibration of standards, absolute ages and uncertainties in 40Ar/39Ar dating. Chemical Geology, 145 (1-2), 117-152. Doi: https://doi.org/10.1016/S0009-2541(97)00159-9.

Rubatto, D. (2002). Zircon trace element geochemistry: Partitioning with garnet and the link between U-Pb ages and metamorphism. Chemical Geology, 184 (1-2), 123-138. Doi: https://doi.org/10.1016/S0009-2541(01)00355-2.

Rubatto, D. (2017). Zircon: The metamorphic mineral. Reviews in Mineralogy and Geochemistry, 83 (1), 261-295. Doi: https://doi.org/10.2138/rmg.2017.83.9.

Rutherford, E. y Soddy, F. (1903). Radioactive change. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 5 (29), 576-591. Doi: https://doi.org/10.1080/14786440309462960.

Schaltegger, U., Fanning, C. M., Gunther, D., Maurin, J. C., Schulmann, K. y Gebauer, D. (1999). Growth, annealing and recrystallization of zircon and preservation of monazite in high-grade metamorphism: conventional and in-situ U-Pb isotope, cathodoluminescence and microchemical evidence. Contributions to Mineralogy and Petrology, 134 (2-3), 186-201. Doi: https://doi.org/10.1007/s004100050478.

Schmitz, M. D. y Schoene, B. (2007). Derivation of isotope ratios, errors and error correlations for U–Pb geochronology using 205Pb–235U–(233U)-spiked isotope dilution thermal ionization mass spectrometric data. Geochemistry, Geophysics and Geosystems, 8 (8). Doi: https://doi.org/10.1029/2006GC001492.

Schoene, B. (2014). U-Th-Pb Geochronology. Vol. 4. Princeton: Princeton University Press. Doi: https://doi.org/10.1016/B978-0-08-095975-7.00310-7.

Shannon, R. D. (1976). Revised effective ionic radii in halides and chalcogenides. Acta Crystallographica Section A, A32, 751-767. Doi: https://doi.org/10.1107/S0567739476001551.

Slama, J., Košler, J., Condon, D. J., Crowley, J. L., Gerdes, A., Hanchar, J. M. et al. (2008). Plešovice zircon: A new natural reference material for U-Pb and Hf isotopic microanalysis. Chemical Geology, 249 (1-2), 1-35. Doi: https://doi.org/10.1016/j.chemgeo.2007.11.005.

Solari, L., Gómez Tuena, A., Bernal, J., Pérez Arvizu, O. y Tanner, M. (2010). U-Pb zircon geochronology with an integrated LA-ICPMS microanalitycal workstation: Achievements in precision and accuracy. Geostandards and Geoanalytical Research, 34 (1), 5-18. Doi: https://doi.org/10.1111/j.1751-908X.2009.00027.x.

Spencer, C. J., Kirkland, C. L. y Taylor, R. J. M. (2016). Strategies towards statistically robust interpretations of in situ U-Pb zircon geochronology. Geoscience Frontiers, 7 (4), 581-589. Doi: https://doi.org/10.1016/j.gsf.2015.11.006.

Sylvester, P. J. (2001). Data reduction software for LA-ICP-MS: Appendix. En Laser Ablation-ICP-mass spectrometry in the Earth sciences: Principles and applications (short course series). Ottawa: Mineralogical Association of Canada.

Tera, F. y Wasserburg, G. J. (1972). U-Th-Pb systematics in lunar highland samples from the Luna 20 and Apollo 16 missions. Earth and Planetary Science Letters, 17 (1), 36-51. Doi: https://doi.org/10.1016/0012-821X(72)90257-9.

Tera, F. y Wasserburg, G. J. (1975). Precise isotopic analysis of lead in picomole and subpicomole quantities. Analytical Chemistry, 47 (13), 2214-2220. Doi: https://doi.org/10.1021/ac60363a036.

Trumpy, D. (1943). Pre-cretaceous of Colombia. Bulletin of the Geological Society of America, 54 (9), 1281-1304. Doi: https://doi.org/10.1130/GSAB-54-1281.

Turekian, K. K. y Wedepohl, K. H. (1961). Distribution of the elements in some major units of the earth’s crust. GSA Bulletin, 72 (2), 175-192. Doi: https://doi.org/10.1130/0016-7606(1961)72[175:DOTEIS]2.0.CO;2.

Watson, E. B. y Harrison, T. M. (2005). Zircon thermometer reveals minimum melting conditions on earliest Earth. Science, 308 (5723), 841-844. Doi: https://doi.org/10.1126/science.1110873.

Watson, E. B., Wark, D. A. y Thomas, J. B. (2006). Crystallization thermometers for zircon and rutile. Contributions to Mineralogy and Petrology, 151, 413-433. Doi: https://doi.org/10.1007/s00410-006-0068-5.

Wedepohl, K. H. (1995). The composition of the continental crust. Geochimica et Cosmochimica Acta, 59 (7), 1217-1232. Doi: https://doi.org/10.1016/0016-7037(95)00038-2.

Wetherill, G. W. (1956). Discordant uranium-lead ages, I. Transactions, American Geophysical Union, 37 (3), 320-326. Doi: https://doi.org/10.1029/TR037i003p00320.

Yang, B., Luff, B. J. y Townsend, P. D. (1992). Cathodoluminescence of natural zircons. Journal of Physics: Condensed Matter, 4 (25), 5617. Disponible en http://stacks.iop.org/0953-8984/4/i=25/a=015.

Downloads

Download data is not yet available.

Similar Articles

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 > >> 

You may also start an advanced similarity search for this article.